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Two-Degree-of-Freedom H∞ Optimization and

Scheduling for Robust Vehicle Lateral Control

SAID MAMMAR 1

SUMMARY

In this paper, the problem of automatic vehicle steering is addressed using a two-degree-of-freedom loop
shaping procedure. The controller is split into two parts. The closed loop part achieves the robust stability
requirement while the prefilter part processes the reference signal and is designed to achieve model matching.
The whole synthesis procedure is emphasized and the controller is tested in various situations with several
system parameter variations. The observer structure of the controller is finally exploited in order to consider
scheduling controllers according to vehicle speed variations. The advantages of the controller scheduling are
outlined with some simulation results.

1. INTRODUCTION

Increasing the capacity of existing highways is one possible way of solving today and
future transport problems. This can be achieved by intelligent highway through a more
rational use of road space. However, increasing safety is also a major goal of the
intelligent highway. Thus, a system capable of coordinating in a safe manner all the
various operations becomes necessary. One of the basic components of this system is
lateral control which permits the execution of the various positioning commands on the
road.

Performing automatic steering on highway encounters significant challenges ac-
cording to performance and robustness requirements. During operation, the vehicle is
subject to several parameter variations and disturbances. The parameter variations are
due to operation conditions (mass, speed, road-tire contact) while disturbances are due
to the external forces acting on the vehicle (wind,. . . ).
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As a robust control method,H∞ methodology has received many developments in
its theoretical and application aspects. Globally two methods have been developed. In
the first one [2] the performance and stability robustness are addressed by weighting
closed loop transfer functions. The second method is due to McFarlane and Glover and
is based on coprime factors system description with direct suboptimal controller solu-
tion without optimization [9]. This method also presents the advantage of converting
theH∞ robust stabilization problem into a loop shaping design procedure according
to classical rules of automatic control. However, the loop shaping procedure does not
directly include specifications for performance such as reference signal tracking. The
two-degree-of-freedom formulation of the problem splits up simply the synthesis into
robust stability achievement and robust reference model matching [4]. In this paper,
this method is investigated in order to improve efficiency in the production of satisfact-
ory controllers both for lane change and lane keeping maneuvers.

The paper is organized as follows: section 2 summarizes the two- degree-of-freedom
H∞ loop shaping procedure. The general model structure and control objectives are
detailed in section 3 while controller synthesis and simulation results are carried out in
sections 4 and 5. A possible way of speed scheduling of the controller is examined in
section 6. It exploits the observer structure of theH∞ controller.

2. SYNTHESIS METHODOLOGY

2.1. The Loop shaping procedure

The transfer matrixG of a p × m MIMO system can be represented using the nor-
malized left coprime factorization:G = M̃−1Ñ , or the right coprime factorization
G = NM−1 [10]. The maximum stability marginεmax is defined by the following
H∞ optimization problem over all stabilizing controllersK∞ [15].

ε−1
max = inf

K∞stabilizing

∥∥∥∥[ K∞
I

]
(I −GK∞)−1

[
I G

]∥∥∥∥
∞

(1)

Let nowGi (i = 1...N) be the models of the system containing the neglected dynamics
in G or obtained for different parameters values of the plant. We can define for such
systems a measure called thel2-induced gap metricδv developed by Vinicombe [15].

Definition 1 Consider two systemsG1 = M̃−1
1 Ñ1 = N1M

−1
1 andG2 = M̃−1

2 Ñ2

= N2M
−1
2 where(Ni,Mi) are the normalized right coprime,(Ñi, M̃i) are the nor-

malized left coprime. The gap betweenG1 andG2 is defined as

δv(G1, G2) :=
{
‖ −Ñ1M2 + M̃1N2 ‖∞ if the following assumption holds

1 otherwise

The assumption is that the frequency response ofdet(M∗1M2 +N∗1N2) does not cross
the origin and its winding number is equal to zero. The winding number of a transfer
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Fig. 1. Coprime factors and model matching configuration.

functionG is the difference between the number of unstable poles ofG−1 andG,
assuming thatG andG−1 areRL∞.

There are other measures that can be used to characterize the distance between two
systems, but this one gives the largest set of systems for a givenε and is easy to compute
from the frequency responses [15]. The robust stabilization problem is now considered.

Theorem 2 A controllerK∞ stabilizing the systemG with a stability marginεmax,

will stabilize all the plants of the setGδv ,ε =
{
Gi = M̃−1

i Ñi, δv(G,Gi) ≤ ε
}

if ε <
εmax.

Another possible way to consider the robust stabilization problem, is to model the
system uncertainties directly as additive unstructured disturbances

[
∆N ∆M

]
on

the normalized coprime factors of the nominal plantG (Fig. 1). Following this repres-
entation, one can define the family of perturbed plantGε as follows [10]

Gε =
{
Gp :

[
∆N ∆M

]
∈ <H∞,

∥∥[ ∆N ∆M

]∥∥
∞ < ε

}
(2)

whereGp is given by (Fig. 1)

Gp =
(
M̃ −∆M

)−1 (
Ñ + ∆N

)
(3)

Coprime factors uncertainty may be used to model system parameter variations and
neglected dynamics. The maximum stability marginεmax is directly computed from
equation (4)[9].

εmax =
{

1−
∥∥[ M̃ Ñ

]∥∥2

H

}1/2

> 0 (4)
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Fig. 2. Loop shape configuration.

We can note from equation (4) that the maximum stability margin depends only on
the nominal systemG, and not on the controller. McFarlane and Glover proposed a
controller design method [9]. In this method, the performance and stability robustness
trade-off are addressed using a loop shaping procedure. The closed loop design spe-
cifications are translated into constraints on the open loop transfer function. The first
step of the design procedure is thus to alter the open loop singular values in order to
obtain the desirable form. This is carried out using a precompensatorW1 and a post-
compensatorW2 (Fig. 2). It yields to the shaped plantGs = W2GW1. Secondly, a
sub-optimalH∞ controllerK∞ is designed, which satisfies forε less than the stability
margin of the shaped plant the following 4-bloc criterion

∥∥∥∥[ K∞
I

]
(I −GsK∞)−1

[
I Gs

]∥∥∥∥
∞
≤ ε−1 (5)

The criterion corresponds to the∞ norm of the transfer function from disturbancesw1

andw2 to outputsz1 andz2 (Fig. 2). ε is generally chosen at a value a little smaller
than the stability margin. The final controller is obtained by combiningK∞ with the
weights (6). When including theH∞ controller into the loop, the open loop transfer
functionsGK andKG remain close toGs [5]. The purpose of the controller is to
stabilize the shaped plantGs with minimum loop shaping degradation.

K = W1K∞W2 (6)

We can note that reference signals are not considered in the synthesis procedure. How-
ever, there are several techniques for introducing reference signals into the closed loop
system. These techniques are detailed in [16], however the two-degree-of-freedomcon-
troller synthesis gives a natural manner of introducing such signals during the synthesis
procedure. This is examined below.

2.2. The two-degree-of-freedom formulation

The two-degree-of-freedomconfiguration of a controller permits the separate processing
of the reference and measurement signals. Letyd, u, andy be respectively the refer-
ence signal, the control input and the measurement. According to the configuration of
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Figure 1, the controller can be split into two partsK1andK2. The control input is then
given by

u = K1yd +K2y (7)

K1 acts as a prefilter of the reference signal while the feedback controllerK2 ensures
robust stability. Suppose now that it is necessary to specify some time domain ob-
jectives such as overshot of step response and settling time. These objectives cannot
be translated accurately into frequency domain specification and can therefore hardly
be taken into account in the loop shape. One possible way is to group all these time
domain objectives into a diagonal transfer matrixMo, which may be considered as
the desired closed loop transfer function betweenyd andy (Fig. 1). The controller
objectives are twofold. The first is the requirement of internal robust stability of the
closed loop system. The second objective is keeping the weighted error signalz small
for the entire familyGε. This fact constitutes robust model matching. The purpose of
parameterρ is to weight the trade-off between robust stability and robust model match-
ing. The following theorem gives a sufficient condition for a controller to satisfy both
objectives.

Theorem 3 Without loss of generality, consider thatρ = 1. If the following condition
holds for any perturbed plantGp of the familyGε,∥∥∥∥∥∥

 (I −GpK2)−1
GpK1 −Mo (I −GpK2)−1

M̃−1

Gp (I −K2Gp)
−1
K1 (I −GpK2)−1

M̃−1

(I −K2Gp)
−1
K1 K2 (I −GpK2)−1

M̃−1

∥∥∥∥∥∥
∞

≤ ε−1

then the closed loop system is stable for everyGp element ofGε, and the closed loop
system achieves the following robust model matching property [4]∥∥∥(I −GpK2)−1

GpK1 −Mo

∥∥∥
∞
≤ ε−1

In the previous theorem, the two controller components are directly computed in one
step using iterativeH∞ standard optimization [3]. It is also possible to consider another
robust model matching problem in whichK2 is synthesized using the non iterative
method of McFarlane and Glover while the prefilterK1 is obtained as a parameteriza-
tion of controllerK2. This is summarized in the following theorem [4, 8, 17].

Theorem 4 Given a nominal shaped plantGs and a two-degree-of-freedom controller
K = [K1,K2], ∥∥∥∥[ I

K2

]
(I −GsK2)−1

[
I Gs

]∥∥∥∥
∞
≤ ε−1

2

∥∥∥∥[ M0 +NQ1

MQ1

]∥∥∥∥
∞

= ε−1
1
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K1 = −(M −K2N)Q1

whereQ1 is a stableRH∞ transfer function, ensures that the system is stable for
all perturbed plantsGp such thatδv(Gs, Gp) < ε2 and the robust model matching
performance index∥∥(I −GpK2)−1GpK1 −M0

∥∥
∞ ≤ (ε−1

1 + ε−1
2 )1/2

is achieved for the familyG∆ generated byGp = Gs(1 + ∆) with ∆ such thatGs and
Gp have the same number of unstable poles and‖∆‖∞ < γ−1,γ ≥ (γ2

1 + γ2
2)1/2.

In this case, robust stability in ensured in the gap metric while robust model matching is
ensured for input multiplicative uncertainty. This uncertainty representation is suitable
for modeling actuator bandwidth limitation and delay.

The synthesis procedure can be summarized as follows

• choose the precompensatorW1 and the postcompensatorW2 according to the
classical rules of theH∞ loop shaping procedure and form the shaped plantGs

• compute the stability margin of the shaped plant

• compute the induced gap-metricδv for a mesh gridding values of the system
parameter variations

• if the induced gap-metric is greater than the maximal stability margin, we must
choose other precompensator and postcompensator and iterate on the previous
items

• else choose the diagonal matrix functionMo according to the design time domain
specification. This transfer function is usually a first or second order lag filter

• select aρwhich expresses the trade off between robust stability and robust model
matching

• select aγ = ε−1 a little bit greater than1/εmax

• compute the suboptimalH∞ controllerK =
[
K1 K2

]
for the standardH∞

system interconnection given by (Fig. 3) [3, 7]


z
y
u
−
η
y

 =


−ρ2Mo ρM̃−1

s | ρGs
0 M̃−1

s | Gs
0 0 | I

−−− −−− | −−
ρI 0 | 0
0 M̃−1

s | Gs



yd
φ
−
u

 (8)
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Fig. 3. StandardH∞ problem formulation of two-degree-of-freedom controller.

whereφ is the input from the perturbation,η is the weighted reference andGs =
M̃−1
s Ñs. Instead of using theorem 3, the controller can also be computed from

theorem 4 in two steps using two differentH∞ optimizations.

• put the pre- and postcompensators into the feedback partK2 according to the
equation (6) and adjust the steady state gain of the prefilter so that the static gain
betweenyd andy will be one.

The controller synthesis procedure presented above is now applied to vehicle lateral
control.

3. VEHICLE MODELING AND TASKS

A linear model of the lateral motion of the vehicle can be derived from a lineariza-
tion of the non-linear kinematic equations, assuming small angles. System parameter
variations, unmodeled dynamics or disturbance are considered as plant uncertainties.
The well used fifth order vehicle linear lateral model is used here, it is obtained by
projection of the kinematic equations on the longitudinal axis [1], (Fig. 4)
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Fig. 4. Single-track model.

where

a11 = −(cr+cf )
m̃v a12 = −1 + crlr−cf lf

m̃v2

a21 = crlr−cf lf
J̃

a22 = − crl
2
r+cf l

2
f

J̃v

b1 = cf
m̃v b2 = cf lf

J̃

(10)

m̃ = m/µ is the virtual mass,̃J = J/µ = m̃i2 is the yaw moment of inertia,ls is
the distance from the vehicle center of gravity (CG) to the sensor (Fig. 4).lr andlf
are respectively the distance from the rear and the front axle to the center of gravity.cr
andcf are the cornering stiffness. The state vector components are the sideslip angle
β, the yaw rater, the difference between the yaw angle of the vehicle and the yaw
angle imposed by the curve∆ψ, the lateral displacementy at the sensor location and
the steering angleδf . The plant control variable will be the front steering angle rate. In
the following, it will be assumed that only∆ψ andy are measured. The trajectory to
be followed is described by the road curvatureρref . Control synthesis and simulations
will be conducted for a medium class vehicle as described in [13, 14].

Three kinds of plant uncertainties have to be considered. First of all, the massm
of the vehicle varies in the range[1330, 1573] Kg. It is assumed that the common
road adhesionµ varies in the range[0.75, 1]. So the total range of the virtual mass
is [1330, 1773] Kg. Secondly, the nominal forward velocityv may be changed from
15 m.s−1 to 40 m.s−1. These variations significantly alter the parameter values of
the state space model. The others model data are maintained constantlf = 1.034 m,
lr = 1.491 m, ls = 1.4 m, cf = 50400 N.rad−1, cr = 33600 N.rad−1 andJ =
2783 Kg.m2.

For automatic steering, the design performance objectives can be defined in terms
of maximal lateral displacement from the guideline and lateral acceleration maximal
boundary. The first objective is set to3 cm. The second objective is set for passengers
comfort, the maximal allowed value is2 m.s−2 (0.2 g) with a maximal overshot of



VEHICLE LATERAL CONTROL 409

(0.1g) from this value. The previous objectives are limited by two steering actuator
constraints: the maximal steering angle value and rate.

Vehicle lateral control can be divided into lane change maneuver on straight road
(LCM) and lane keeping maneuver (LKM). The lane change maneuver in curves can
be considered as general lane change. Considering the configuration of Figure 5, the
LCM can be viewed as a tracking problem with a reference signalyd = 3 m which
corresponds to the distance between the center line of two adjacent lanes. The lane
change maneuver can be divided into the transition phase and the settling phase. The
transition phase is defined as the phase from the initiation of the lane change command
to the moment when the vehicle is within10 cm of the center of the adjacent lane. This
transition phase must be as short as possible while fulfilling ride quality requirement
in terms of maximal lateral acceleration and jerk. During the settling phase the lateral
displacement from the center lane must be less than5 cm. From the vehicle point
of view, a lane keeping maneuver requires the controller to reject lateral acceleration
and yaw rate disturbances caused by change in the radius of curvature. In fact, in this
configuration, the reference curvature is an external input for the system (Fig. 5).

4. CONTROLLER DESIGN

Recall that lateral control of a vehicle is defined as a combination of a tracking prob-
lem, according to the lane change maneuver (LCM) and a disturbance rejection prob-
lem associated with lane keeping. The control takes then the configuration of Figure
2. In [12], a prefilter configuration is chosen in order to convert the constant relat-
ive lateral position command into the smooth relative lateral position trajectory. This
configuration requires however distinct synthesis of twoH∞ controllers. The two-
degree-of-freedom configuration of the controller avoids this requirement and allows a
direct specification of the desired trajectory via the diagonal system matrixM0.

The choice of pre- and postcompensators is as follows. The precompensatorW1

is chosen as a first lead filter in order to counteract the low pass integrator effect of
the actuator (11). The postcompensatorW2 is chosen as a diagonal lead filters matrix
(12). The filter ony enhances the speed of response by increasing the bandwidth,
and increases the robustness margin by reducing the roll-off rate near the crossover
frequency [6]. This effect can be seen from Figure 6 where the singular values of the
transfer function from the steering angle rate to the lateral displacement are plotted for
the nominal system (solid line) and the shaped one (dashed line). The filter on∆ψ
has the same effect as the one ony. The effect of these filters on the stability margins
can be quantified by computing the maximal stability margin for the nominal plant
and the shaped plant. This stability margin is improved by a factor 4.33. The induced
gap-metricδv is then computed for a mesh gridding values of the speed and virtual
mass variation ranges. Figure 7 shows that the ratio between the gap-metric and the
maximum stability margin of the system is less than 1, this means that the controller
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which stabilizes the nominal system withm = 1550 Kg andv = 25 m.s−1 with the
previous weighting filters will stabilize all the perturbed plants.

W1 =
s+ 1

10−2s+ 1
(11)

W2 = diag
{

0.375 0.5s+1
5×10−3s+1 , 0.01 0.5s+1

13×10−3s+1

}
(12)

The time response reference model on the lateral displacementy is selected to be a
second order transfer function ony and a first order on∆ψ

Mo = diag
{

1
s2+2s+1 ,

1
3.14s+1

}
(13)

this ensures a unitary static gain and a settling time of6 s. The controller is finally
synthesized for the interconnection structure withγ = 3.1. The final control structure
implementation then takes the form given in Figure 5.
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Fig. 8. Lateral offset, LKM 1.

5. SIMULATIONS

Analysis of the closed loop system behaviour is now performed for various maneuvers.
The simulations are conducted on the four vertex systems

• system (So) (resp. (S1)) for minimal (resp. maximal) virtual mass and minimal
speed(15 m.s−1)

• system (S2) (resp. (S3)) minimal (resp. maximal) virtual mass and maximal
speed(40 m.s−1)

In all of the figures, the full line corresponds to the responses of the vertex system
So, the dashed line is forS1, the dashdot is forS2 and the dotted line is forS3.
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Fig. 9. Lateral acceleration, LKM 1.
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Fig. 10. Steering angle, LKM 1.

5.1. Lane keeping maneuver

In this section the controller performance is investigated on a road section where the
vehicle enters a curve and exits7.5 s later to a straight road. For this maneuver,
the vehicle enters a curve with a curvature1/470 m−1 for the minimal speed, and
a curvature decreased of1/1000 m−1 for the maximal speed. These curvatures are
the maximum allowed safety curvatures at these speeds. Figures 8 to 10 show the re-
sponses of the four vertice systems. In this case the prefilter part of the controller is not
involved. One can see that the lateral offset is less than2.5 cm during the transition
phase and is near zero in the steady state. The lateral acceleration and the steering
angle design constraints are fulfilled. When the speed increases the overshot from the
guideline increases and the responses oscillate but still remain within the prescribed
limits.

Figure 11 and 12 show the results obtained for the following maneuver: at a speed
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Fig. 11. Lateral offset, LKM 2.
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Fig. 12. Lateral acceleration, LKM 2.

of 15 m.s−1, the vehicle enters a curve of1/470 m−1 and exits7.5 s later to a curve
of 1/600m−1. At a speed of40 m.s−1, the vehicle enters a curve of1/1000m−1 and
exits7.5 s later to a curve of1/1200m−1. The outputs for the first phase are the same
as those obtained for the previous maneuver, but the overshot from the steady state at
7.5 s is smaller because the gradient in the road curvature is smaller.

5.2. Reaction to wind gust

Wind gust forces can be considered as extra inputfw to the system acting at a distance
lw from the center of gravity (CG). The state space equation (9) must be updated with
the two following equations{

β̇ = a11β + a12r + b1uf + 1
mv .fw

ṙ = a21β + a22r + b2uf + lw
J .fw

(14)
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Fig. 13. Lateral offset, LKM2 and wind gust.
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Fig. 14. Lateral acceleration, LKM and wind gust.

The vehicle is now assumed to move on the previous curve and is subject to a wind
gust of600 N acting at0.1 m from the center of gravity. It is also assumed that the
wind gust suddenly disappears when the vehicle enters the second curve at7.5 s. The
comparison of Figures 11 and 13 shows that the lateral displacement is not significantly
affected by this disturbance. It is less than 3 cm. It appears from Figure 14 that the
overshot of the lateral acceleration from its steady state value is within the limit of
0.1 g.

5.3. Lane change maneuver

The synthesized control is now tested in the case of a lane change maneuver. The
lane change maneuver is considered first on a straight road, and then on a curved road.
The curved road is the one considered in the second lane keeping maneuver. One can
see from Figures 15 and 18 that the lateral displacement response is very close to the
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Fig. 15. Lateral offset, LCM on straight road.
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Fig. 16. Lateral acceleration, LCM on straight road.

specified model responseMo for all vertice systems. Limits on both lateral acceleration
and actuator constraints are fulfilled in Figures 16, 17 and 19.

In the next section, the controller scheduling according to speed variations is con-
sidered. The aim is the reduction of response oscillations observed for the high values
of speed and virtual mass.

6. CONTROLLER SPEED SCHEDULING

The forward speed of the vehicle is chosen here to the measured parameter which
will be used for controller selection. The observer structure of the loop shapingH∞
controller can be used to realize a simple controller scheduling procedure. In fact
the controller resulting from loop shaping approach can be written as an exact plant



416 S. MAMMAR

0 5 10 15
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

St
ee

rin
g 

an
gl

e 
[d

eg
]

Time [s]

Fig. 17. Steering angle, LCM on straight road.
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Fig. 18. Lateral offset, Lane change on curved road.
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Fig. 19. Lateral acceleration, Lane change on curved road.
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observer plus state feedback{ ˙̂x = Asx̂+H(Csx̂− y) +Bsu
u = F x̂

(15)

whereAs, Bs, Cs are the state space matrices of the shaped plantGs,H = −ZCTs , and
F = B′s(ε

2I+ε2XZ− I)−1X whereX andZ are the associated control and filtering
algebraic Riccati equations solutions [10]. As the system state space matrices vary
smoothly with speed change, it is possible to makeH andF scheduled as a function of
the forward speedv. For example, The matrices between two adjacent speedsvi and
vi+1 are obtained by {

F (v) = (1− α)Fi + αFi+1

H(v) = (1− α)Hi + αHi+1
(16)

whereα is a positive number between 0 and 1. However the stability of the system
for v betweenvi andvi+1 is not ensured. The following theorem gives a sufficient
condition using a set of linear matrix inequalities and positive definite matricesLi and
Pi.

Theorem 5 [18] Consider a set of controllersKi
2 (i = 1, ..., q) such that each element

is synthesized for a particular speed(A(vi), B(vi)) (vmin = v1 < v2 < ... < vq =
vmax). These controllers may be decomposed in state feedback and observer matrices
(Fi, Hi). Suppose now that there exists a set of positive definite matricesLi etPi and
a positive scalarγ such that

Li (A(v) +B(v)Fi)
T + (A(v) +B(v)Fi)Li ≤ −γI

and

(A(v) +HiC)T Pi + Pi (A(v) +HiC) ≤ −γI

for v ∈ [ai, bi], [ai, bi] ∩ [ai+1, bi+1] 6= ∅ and ∪[ai, bi] = [vmin, vmax], then the
scheduled controllerK2(v) = (F (v), H(v)) with

F (v) =


Fi v ∈ [vi, ci[(

di−v
di−ciFiLi + v−ci

di−ciFi+1Li+1

)
L−1(v) v ∈ [ci, di]

Fi+1 v ∈]di, vi+1]

H(v) =


Hi v ∈ [vi, ci[
P−1(v)

(
di−v
di−ciPiHi + v−ci

di−ciPi+1Hi+1

)
v ∈ [ci, di]

Hi+1 v ∈]di, vi+1]

and  L(v) =
(
di−v
di−ciLi + v−ci

di−ciLi+1

)
v ∈ [ci, di]

P (v) =
(
di−v
di−ciPi + v−ci

di−ciPi+1

)
v ∈ [ci, di]
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whereci anddi are chosen such that

[ci, di] ⊂ [ai, bi] ∩ [ai+1, bi+1]

exponentially stabilizes the system(A(v), B(v)) for all speedsv in the range[vmin, vmax]
and verifying

|v̇(t)| < min
i=1,...,q−1

{
di − ci

max {‖Li+1 − Li‖ , ‖Pi+1 − Pi‖}

}
6.1. Scheduled controllers design

First the speed range from20 m.s−1 to 40 m.s−1 is sampled by covering it with a
mesh consisting of 5 equally spaced grid points denotedvi. The controller design is
reconsidered, firstly we make use of two parametersk1, andk2.

W1 = k1
s+ 1

10−2s+ 1
(17)

W2 = diag
{
k2

0.5s+1
5×10−3s+1 , 0.01 0.5s+1

13×10−3s+1

}
(18)

For each grid pointvi, the two parameters are chosen in order to maximize the
stability margin. The stability margins and the associated parameters are given in table
1.

Table 1 shows that the maximum achievable stability margin is almost the same for
all the speeds. A controller is finally synthesized for each of speed operating point for
a relaxed valueε of εmax using the procedure developed above. Scheduling matrices
Li andPi are obtained afterwards from LMI constraints of theorem 5 using the LMI
solver of [3]. The implementation configuration of the scheduled controllers is shown
on Figure 20. Simulation results are detailed in the next section.

6.2. Evaluation of the scheduled controllers

The scheduled controller is tested in the case of lane keeping maneuver on the road
curvature profile shown on Figure 21. In order to capture the advantages of speed
scheduling, simulations are conducted in two different ways: speed varying with fixed
controller and speed varying with scheduled controllers. In the figures, the solid lines
correspond to the fixed controller simulation while dashed ones to the scheduled ones.
The speed variations considered here are between40 m.s−1 and20 m.s−1. The speed
is assumed to be uniformly decreasing during simulation from its maximum value to its
minimum value. Figures 22 to 25 show that the lane keeping maneuver, with the sched-
uled controllers, is performed in better conditions. The lateral acceleration is attenuated
while all other responses present smaller maximum offset and are less oscillatory.
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Fig. 20. Observer structure implementation.
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Fig. 21. Road curvature profile.

v 20 25 30 35 40
εmax 0.561 0.548 0.539 0.532 0.527
k1 1.485 1.575 1.646 1.704 1.753
k2 1.414 1.444 1.468 1.487 1.504

Table 1. Optimized values for speed grid.
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Fig. 22. Lateral offset, fixed and scheduled controller.
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Fig. 23. Lateral acceleration, fixed and scheduled controller.

7. CONCLUSIONS

In this paper, the two-degree-of-freedomH∞ optimization applied to automatic vehicle
steering has been presented. The synthesis methodology simply allows direct specific-
ation of the time domain objectives. The whole synthesis procedure is emphasized and
the obtained controller is tested on several typical automated highway maneuvers. The
speed scheduling of the controller is then considered. The approach is found to be able
to improve ride quality, the responses of the system are less oscillatory. However all
the maneuvers are accomplished within system constraints and imposed limits of safety
and comfort. In comparison with other control methods such as sliding mode [1], only
the road relative lateral displacement and yaw angle are needed to be measured. These
variables may be provided by a single sensor such as a video camera.
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Fig. 24. Steering angle, fixed and scheduled controller.
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Fig. 25. Steering angle rate, fixed and scheduled controller.
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