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Abstract: In this paper, the problem of observers for Takagi-Sugeno (TS) models with
unmeasurable premise variables is investigated and a new design approach is proposed. The
idea, is motivated by the immersion techniques and auxiliary dynamics generation, and consists
in the transformation of the TS system with state dependent weighting functions in a new TS
system with weighting functions depending only on the measured variables. This result aims to
relax the strong conditions used in the design of observers for TS systems with unmeasurable
premise variables. Illustrative example is provided to discuss the performances of the proposed
approach.

1. INTRODUCTION

From the beginning of the years 2000, the problem of
state observer design for Takagi-Sugeno systems having
state dependent weighting functions was investigated. Un-
til now, it remains an open problem. The focus is made
on the case where the states involved in the weighting
functions are not known. The first result was proposed in
Bergsten et al. [2001] which extends the Thau-Luenerger
observer Thau [1973]. This result has provided LMI condi-
tions depending on the assumption that the perturbation-
like term is Lipschitz. The LMIs depend on the Lips-
chitz constant. This result is extended in Lendek et al.
[2009] for TS cascaded systems and in Ichalal et al. [2010]
by splitting the perturbation-like term and compute the
Lipschitz constants of the weighting functions. The main
drawback of these approaches is in the Lipschitz constant
LMI-dependent. Indeed, the admissible Lipschitz constant
(maximal value of this constant) allowing the existence of
a solution to the LMI conditions is often very small which
limits the applicability of the Lipschitz approach. Inspired
by the differential mean value theorem, used for Lipschitz
nonlinear systems Zemouche et al. [2008], a new result is
provided by applying this theorem for TS systems with
unmeasurable premise variables in Ichalal et al. [2011b],
Ichalal et al. [2011a]. The interest of such a result is that
it has proposed LMI conditions free from the Lipschitz
constant and with asymptotic convergence property. Then,
this approach overcomes the limitation related to the Lip-
schitz assumption and its constant. However, the number
of LMIs may become huge which introduce computational
complexity. Recently, works have been proposed in order
to reduce the conservatism of the Lipschitz approach.
The idea is to leave the asymptotic convergence for only
bounded error convergence, see for example the quasi
Input-to-State Stability (qISS) approach in Ichalal et al.
[2012].

Generally, since the linear systems domain is well un-
derstood and huge number of algorithms and theories
have been developed for control, observation and analy-
sis, the central questions that arise from the beginning
of the nonlinear systems story are: Are there coordinate
transformations that transform the original system into a
linear one in the new coordinates? What are the conditions
ensuring the existence of such coordinate transformations?
Due to recent developments of some classes of nonlinear
systems the first question is relaxed by seeking coordinate
transformations that transform the system in nonlinear
particular structures, for example, linear systems modulo
output injection or state affine systems. In the TS frame-
work, until now, the only used transformation is the sector
nonlinearity transformation. Indeed, in the major part of
control and observer design, the nonlinear system is kept in
the original coordinates and transformed it in a polytopic
form (TS form). Especially, in the state observation field,
this reasoning introduced several difficulties in stability
study of the state estimation error when the premise vari-
ables depend of the unmeasured states of the system.

This paper is motivated by the notion of exact lineariza-
tion without feedback of nonlinear systems introduced in
Krener and Isidori [1983] which has aroused great interest
as shown by the rich literature in this domain Kazantzis
and Kravaris [1998], Glumineau et al. [1996], Keller [1987],
Besancon [2007], Souleiman et al. [2003], etc. It introduces
a new algorithm for state observer design for TS systems
by using the immersion techniques which transforms a TS
system with unmeasurable premise variables into a TS
system with measurable premise variables in the new coor-
dinates. The proposed immersion algorithm can be viewed
as an extension of the state vector with new variables
(auxiliary dynamics). Notice that using TS structure re-
duces the complexity in searching an adequate coordinate
transformation compared to the existing approaches which



seek of new coordinate transformations in order to have a
special nonlinear structure (observable normal forms). In
the TS framework, the only objective is to find a LPV
system with parameters depending on measured signals,
then the LPV system can be transformed into a TS form
by using the sector nonlinear transformation in a compact
set of the state space.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider the nonlinear system

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)) (1)

In the context of Takagi-Sugeno systems, the system
(1) can be transformed into a T-S system by using the
sector nonlinearity approach Tanaka and Wang [2001] in
a compact set of the state space as follows







ẋ(t) =

r∑

i=1

hi(ξ(t)) (Aix(t) +Biu(t))

y(t) =

r∑

i=1

hi(ξ(t))Cix(t)

(2)

where x ∈ R
n, u ∈ R

ny , y ∈ R
ny and Ai, Bi and Ci are

known matrices with appropriate dimensions. The weight-
ing functions hi(ξ(t)) depend on the premise variable ξ(t)
and satisfy the convex sum property. Firstly, assume that
the premise variable ξ(t) depend only on measured signals
or signals available at real time. Consequently, the state
observer takes the form






˙̂x(t) =

r∑

i=1

hi(ξ(t)) (Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) =

r∑

i=1

hi(ξ(t))Cix̂(t)

(3)
Note that the TS system (2) and the observer (3) share the
same premise variables. By defining the state estimation
error e(t) = x(t) − x̂(t), its dynamics obeys to the
differential equation

ė(t) =

r∑

i=1

r∑

j=1

hi(ξ(t))hj(ξ(t)) (Ai − LiCj) e(t) (4)

Notice that the stability study of the TS systems of the
form (4) has attracted a lot of attention and several ap-
proaches were proposed in order to provide less conser-
vatism LMI conditions Tanaka and Wang [2001], Guerra
et al. [2006], Sala and Arinõ [2007] etc.

However, in the case of premise variables depending on
unmeasured states ξ(t) = x(t), these approaches cannot
be directly exploited. Indeed, in such a case, the observer
does not share the same premise variables as the TS system
(2) but only the estimated ones as follows






˙̂x(t) =

r∑

i=1

hi(ξ̂(t)) (Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)))

ŷ(t) =
r∑

i=1

hi(ξ(t))Cix̂(t)

(5)
All the techniques dealing with this case considers linear
output equation y(t) = Cx(t). With this restriction, the
state estimation error dynamics becomes

ė(t) =

r∑

i=1

hi(ξ̂(t)) (Ai − LiC) e(t) + δ(t) (6)

where δ(t) =
2∑

i=1

(

hi(ξ(t))− hi(ξ̂(t))
)

(Aix(t) +Biu(t)).

It is then clear that studying the stability of the system
(6) generating the state estimation error is more difficult
than that of the system (4). Intensive researches have been
devoted to this problem and some results were provided.
In Bergsten et al. [2001], a method based on the Lipschitz
assumption of the term δ(t) has been established which
ensures asymptotic convergence of the state estimation
error toward zero. The same idea were used in Lendek
et al. [2009] and Ichalal et al. [2010]. The main drawback
of these approaches is that the LMI conditions are feasible
only for Lipschitz constants having very small values which
limits the domain of applicability of these approaches. In
addition, the computation of the Lipschitz constant may
become a hard task for complex systems. In order to avoid
these problems, an approach based on the mean real value
theorem and the sector nonlinearity transformation Ichalal
et al. [2011b],Ichalal et al. [2011a]. The main advantage
of this approach is the establishment of LMI conditions
free form the Lipschitz constant. However, For complex
systems it may happen that the number of LMIs becomes
huge which limits the existence of a solution, nevertheless,
the limitation related to the Lipschitz constant is avoided.
Notice that the cited approaches aim to provide conditions
ensuring asymptotic or exponential convergence. More
recently, new approaches have been proposed by replacing
the asymptotic convergence by only the bounded error
convergence. It is illustrated that the LMI conditions are
relaxed compared the asymptotic approaches, hence, the
bounded error property is the price to pay to obtain a
solution (see for example, Ichalal et al. [2012] by using the
L2 approach or quasi-Input-to-State Stability (qISS)).

In this paper, a new idea is proposed. it is the answer to
the question: Is there a coordinate transformation aiming
to transform the TS system with unmeasurable premise
variables into a new TS system having weighting functions
depending only on measured variables? The present paper
addresses an answer based on the immersion techniques
and auxiliary dynamics used in some observation and
control problems of nonlinear systems. The approach is:
from a nonlinear system of the form (1) and before
using the sector nonlinear transformation, the auxiliary
dynamics are used in order to express the system in
a Linear Parameter Varying (LPV) system where the
matrices depend only on measured variables. Then, the
sector nonlinearity transformation can be used in order
to express exactly the new system in TS form. Finally,
since the premise variables of the obtained TS model are
measured, the classical observer (3) can be used and then
exploit the rich algorithms and tools developed for stability
analysis of the state estimation error of TS systems with
measurable premise variables.

3. MAIN RESULT

The aim of the proposed procedure is to seek for a new
coordinate transformation of the nonlinear system in such
a way to obtain, after sector nonlinear transformation, a
TS model with measurable premise variables, and then



the existing results can be exploited, which reduces the
design complexity and avoids the additional restrictive
assumptions required for the existing methods in the
framework of observer for TS systems with unmeasurable
premise variables. The classical procedure for observer
design of nonlinear systems using TS models is:

(1) Step 1: Transform the nonlinear system in a quasi-
LPV model

(2) Step 2: Using the sector nonlinear transformation,
obtain a TS form in a compact set of the state space.
If the premise variables are measured or available at
real time, go to step 3. If the premise variables are
unknown, go to step 4.

(3) Step 3: Design the observer (3).
(4) Step 4: Design the observer (5).

The proposed procedure is:

(1) Step 1: For the nonlinear system (1), obtain new
coordinates from the immersion techniques and aux-
iliary dynamics. The obtained system is made in LPV
form where the parameters depend only on measured
signals (input and / or output).

(2) Step 2: Using the sector nonlinear transformation,
obtain a TS form in a compact set of the state space.
The premise variables are measured.

(3) Step 3: Design the observer (3).

It can be seen, from the above comparison of the classical
and the proposed algorithm, that the proposed approach
uses only the simple approach with TS models having
measured premise variables. Then, the complexity related
to the stability analysis of the state estimation error of TS
systems with unmeasurable premise variables is avoided.

3.1 Auxiliary dynamics generation

The technique consists in immersing the state space of
the original system (1) of dimension n into an other state
space of dimension N ≥ n by preserving the input-output
map. This approach can be seen as the extension of the
state vector with new variables coming from the different
nonlinearities of the system.

Transformation procedure

(1) Step 1: Initialize the first new variables from the
state vector zi = xi, i = 1, ..., n.

(2) Step 2: For each new variable, compute its time
derivative (exactly the same equations as the original
system) and separate all the functions depending only
on measured variables y and u and define the remain-
ing nonlinear functions as new variables zk, k > n. By
differentiating these variables it follows

żk =
∂zk

∂x
(f(x) + g(x)u) =

k∑

i=1

ak,i(u, y)zi

+

l∑

i=k+1

ak+1,i(u, y)zi + ϕk(u, y) (7)

where zi, i = k + 1, ..., l denote other defined new
variables. The step 2. is repeated for all the defined
variables and the parameter l converges to N the
dimension of the new state vector z.

(3) Step 3: The algorithm stops when the time derivative
of the kth new state is free from nonlinear functions
depending on the unknown states.

After computing the system in the new coordinates, it can
be expressed as follows

{
ż = A(u, y)z +B(u, y)u+ ϕ(u, y)
y = Cz

(8)

Finally, by considering the compact set U×Y where u ∈ U
and y ∈ Y, the system in TS form is obtained







ż =

r∑

i=1

hi(ξ) (Aiz +Biu) + ϕ(u, y)

y = Cz

(9)

where the premise variables depend only of measurable
variables y and u. Therefore, the problem of observer
design becomes more easier with measurable premise vari-
ables compared to the direct design which provides unmea-
surable premise variables and leads to complex stability
study and conservative results.

Remark 1. By comparison with the use of immersion in
nonlinear systems, the target model in the new coordinates
takes particular forms such as linear observable form
with output injection, observable state affine model with
output injection, etc. Notice that the computation of the
coordinate transformation may be very difficult for such
target models. The proposed algorithm aims to transform
the system in less conservative form which is expressed
by ż = A(u, y)z + B(u, y)u with general structure (not
necessarily in triangular form) which relaxes the search of
the adequate transformation. The obtained form can be
easily transformed in TS system with measurable premise
variables, then, the existing results of TS systems state
observer design can be used and sufficient LMI conditions
can be derived easily which are less conservative compared
to the LMI conditions obtained directly from the TS
system with unmeasurable premise variables which require
additional assumptions (Lipschitz condition, boundedness
on the nonlinearities and the states,...).

Remark 2. Notice that in the immersion algorithm, the
transformation is not unique and for some of them, the
properties of the original system may be lost in the new co-
ordinates (especially, in this paper, we speak about observ-
ability and detectability). Indeed, there may exit different
change of coordinates expressing the system in the form
ż = A(u, y)z+B(u, y)u. An analysis should be performed
before choosing the most adequate change of coordinates
which satisfy observability or at least detectability.

Remark 3. Notice also that the new vector z of the trans-
formed system contains the state x of the original system.
This fact is interesting since inverse transformation is not
needed in order to recover the state x from z, it is obtained
directly from z.

4. SIMULATION EXAMPLE AND COMPARISONS

Let us consider the simple example defined by

ẋ1 = x1 − x1x
2
2 + u, ẋ2 = −x1 − 2x2, y = x1 (10)

Lipschitz approach Bergsten et al. [2001], Lendek et al.
[2009] By applying directly the sector nonlinear trans-
formation by considering the premise variable ξ(t) =



x1(t)x2(t) and assuming that dmin ≤ ξ(t) ≤ dmax, the
TS system is obtained

[
ẋ1

ẋ2

]

=

2∑

i=1

hi(ξ(t))

[
1 −ai
−1 −2

] [
x1

x2

]

+

[
1
0

]

u

=

2∑

i=1

hi(ξ(t))Aix(t) +Bu (11)

where h1(ξ(t)) = ξ(t)−dmin

dmax−dmin

, h2(ξ(t)) = dmax−ξ(t)
dmax−dmin

and
a1 = dmax, a2 = dmin. The output of the system is linear
and described by y(t) = [1 0]x(t) = Cx(t). Classically, the
observer for this system is expressed as follows

˙̂x(t) =
2∑

i=1

hi(ξ̂(t)) (Aix̂(t) + Li(y(t)− ŷ(t))) +Bu (12)

Notice that since the premise variable ξ(t) depends on the

unknown state x2(t), it is replaced by its estimation ξ̂(t).
By considering the state estimation error e(t) = x(t)−x̂(t),
its dynamics is expressed by

ė(t) =

2∑

i=1

hi(ξ(t)) (Ai − LiC) e(t) + δ(t) (13)

where

δ(t) =

2∑

i=1

(
hi(ξ(t))− hi(ξ̂(t))

)
Aix(t) =

[

0 −(ξ(t)− ξ̂(t))
0 0

]

x(t)

(14)

Knowing that ξ(t) = x1(t)x2(t), it is locally Lipschitz and

the Lipschitz condition can be expressed by
∣
∣
∣ξ(t)− ξ̂(t)

∣
∣
∣ <

η ‖e(t)‖, and since x2(t) is bounded |x2(t)| < σ2, the term
δ(t) can be bounded by ‖δ(t)‖ < γ ‖e(t)‖, where γ = ησ2

is the Lipschitz constant of δ(t). From these assumptions,
the LMI conditions given in [Bergsten2002], recalled here

AT
i P + PAi −KiC − CTKT

i <−Q, i = 1, 2 (15)
[

−Q+ γ2I P
P −I

]

< 0 (16)

can be solved with symmetric and positive definite ma-
trices P and Q and gain matrices Ki, i = 1, 2. If a so-
lution exits, the gains of the observer are deduced from
Li = P−1Ki, i = 1, 2. In order to compute the maximal
admissible Lipschitz constant, the LMI conditions can be
modified and expressed as an optimization problem which
maximizes the constant γ and ensuring the asymptotic
convergence of the state estimation error. This optimiza-
tion problem takes the form

min
P,Q,Ki,τ

τ

AT
i P + PAi −KiC − CTKT

i <−Q, i = 1, 2 (17)
[
−Q P I
P −I 0
I 0 −τI

]

< 0 (18)

After solving this problem, the maximal admissible Lip-
schitz constant is obtained by γ∗ = 1

τ
. It means that if

the real Lipschitz constant γ is greater that γ∗, there is

no solution to the LMIs and then the observer cannot be
designed with such an approach.

For numerical simulations, let us consider the bounded
premise variables as follows −6 ≤ ξ(t) ≤ −0.5, this leads
to the matrices

A1 =

[
1 0.5
−1 −2

]

, A2 =

[
1 6
−1 −2

]

and the Lipschitz constant γ = 3.4409. By using the
YALMIP and Sedumi solver, it is found that there is no so-
lution to the LMIs (15)-(16). In addition, the optimization
problem (17)-(18) provides the maximal admissible Lips-
chitz constant γ∗ = 2.0616. If the real Lipschitz constant
exceeds the admissible one γ∗ then, there is no solution,
which is the case for this example. It can be concluded
that the Lipschitz approach is conservative and provides
solution in a very local state space providing Lipschitz
constants less than γ∗.

Mean Value Theorem approach Ichalal et al. [2011b],Ichalal
et al. [2011a] For this approach, the same TS model
obtained in the previous section is used. The difference is
in the treatment of the perturbation-like term δ(t) (14),
this term can be expressed as follows

δ(t) =

[
−1
1

](

ξ(t)− ξ̂(t)
)

x2 (19)

Since the nonlinear function ξ(t) = ξ(x) is differentiable

and denote ξ̂(t) = ξ(x̂), the Mean Value Theorem can be
applied for x ∈ X (X is a bounded set) as follows: there
exists a constant vector c ∈]x, x̂[ such that

ξ(t)− ξ̂(t) = ξ(x)− ξ(x̂) =
∂ξ

∂x
(c) (x− x̂) (20)

where ∂ξ
∂x

=

[
∂ξ

∂x1

∂ξ

∂x2

]

. Then, the term δ becomes

δ(t) =

[

−x2
∂ξ

∂x1
(c) −x2

∂ξ

∂x2
(c)

0 0

] [
e1
e2

]

(21)

=

[
f1(x2, c) f1(x2, c)

0 0

]

e (22)

From the assumption that x ∈ X , x2 is bounded and we
have the following properties fmin

i ≤ fi(x2, c) ≤ fmax
i , i =

1, 2. By using the sector nonlinearity transformation on
the nonlinearities fi, the term δ(t) is expressed by δ(t) =
4∑

j=1

vi (f1, f2)Aje(t). Finally, the state estimation error

dynamics (13) is expressed by

ė =

2∑

i=1

4∑

j=1

hi(ξ̂)vi (f1, f2) (Ai +Aj − LiC) e (23)

The stability analysis of the system (23) is now easier than
(13). By using a quadratic Lyapunov function, the LMI
conditions can be expressed as follows (P = PT > 0)

(Ai +Aj)
T
P + P (Ai +Aj)− CTKT

i −KiC < 0 (24)

∀i = 1, 2, ∀j = 1, ..., 4
The gains of the observer are then given by Li = P−1Ki.
If we consider the same numerical values as previously,
namely, 1 ≤ x1 ≤ 4 and −1.6 ≤ x2 ≤ −0.5, the bounds on
the functions f1 and f2 can be computed as follows

−2.56 ≤ f1(x2, c) ≤ −0.25, 0.5 ≤ f2(x2, c) ≤ 6.4 (25)



A solution is then obtained for the LMIs and the observer
gains are computed which ensure asymptotic convergence.
Notice that even if the compact set X is enlarged a solution
is provided which relaxes the Lipschitz approach. However,
the number of LMIs to solve is 8.

quasi-ISS approach Ichalal et al. [2012] With the quasi-
ISS approach, the same observer is considered and the
state estimation error (13) is then obtained. The difference
with the Lipschitz and MVT approaches is that the term
δ(t) is considered as an external bounded perturbation.
Indeed, in the compact set X , this term is bounded since
x is bounded. From the result in Ichalal et al. [2012]
and by considering a quadratic Lyapunov function, the
objective is to solve an optimization problem under LMI
conditions. This algorithm provides also a solution and the
gains Li are computed which ensure ISS property instead
of asymptotic convergence. The number of LMIs to solve
in this case is 3.

Proposed approach with auxiliary dynamics Let us go
back to the first example (10). Before transforming this
system in TS form thanks to the sector nonlinear transfor-
mation, the proposed algorithm is first applied as discussed
above.

(1) Step 1: consider the new variables z1 = x1 and
z2 = x2.

(2) Step 2: The time derivatives of z1 and z2 are given by

ż1 = x1 − x1x
2
2 + u = z1 − y x2

2
︸︷︷︸

z3

+u

ż2 = −x1 − 2x2 = −z1 − 2z2

(26)

From the above equation, a new variable is defined
z3 = x2

2.
(3) Step 3: By differentiating z3 with respect to time, one

obtains

ż3 = 2x2ẋ2 = −2x1x2 − 4x2
2 = −2yz2 − 4z3 (27)

Since there is no new variable to define, the algorithm
ends.

The obtained change of coordinates is (z1(t), z2(t), z3(t)) =
(x1(t), x2(t), x

2
2(t)) which leads to the extended system

[
ż1(t)
ż2(t)
ż3(t)

]

=

[
1 0 −y(t)
−1 −2 0
0 −2y(t) −4

][
z1(t)
z2(t)
z3(t)

]

+

[
1
0
0

]

u (28)

It can be seen that the state matrix of the obtained system
depends only on the measured output y(t). Now, by using
the sector nonlinearity transformation, the TS system is
obtained

ż(t) =
2∑

i=1

hi(ξ(t))Aiz(t) +Bu (29)

where the premise variable is nothing than the measured
output ξ(t) = y(t). Under the assumption that ymin ≤
y(t) ≤ ymax, the matrices of the new TS system are given
by

A1 =

[
1 0 −ymax

−1 −2 0
0 −2ymax −4

]

,

A2 =

[
1 0 −ymin

−1 −2 0
0 −2ymin −4

]

, B =

[
1
0
0

]

and the weighting functions are h1(ξ(t)) = ξ(t)−ymin

ymax−ymin

,

h2(ξ(t)) = ymax−ξ(t)
ymax−ymin

, where ξ(t) = y(t) which is com-

pletely measurable. The output of the system is given by
y = [ 1 0 0 ] z = Cz. An observer for this new system is
expressed by

˙̂z(t) =

2∑

i=1

hi(ξ(t)) (Aiz(t) + Li(y(t)− ŷ(t))) +Bu (30)

The state estimation error e(t) = z(t)− x̂(t) obeys to the
simple differential equation

ė(t) =

2∑

i=1

hi(ξ(t)) (Ai − LiC) e(t) (31)

Its stability can be studied by different approaches pro-
vided in the literature. Notice that, for this example,
after estimating the state z(t), the original state x(t) is
obtained directly form ẑ(t) because x̂1(t) = ẑ1(t) and
x̂2(t) = ẑ2(t) (There is no need to inverse transforma-
tion). With comparison to the Lipschitz-based approach,
the present approach overcomes the computation on the
Lipschitz constant and reduces the conservatism related to
the corresponding LMIs.

With the same numerical example as for the Lipschitz
approach, the output y(t) is bounded as follows 0.9 ≤
y(t) ≤ 4. The proposed approach provides a solution
for the LMIs obtained by a quadratic Lyapunov function
V (e(t)) = eT (t)Pe(t) and recalled here

AT
i P + PAi −KiC − CTKT

i < 0, i = 1, 2 (32)

and the gains of the observer are obtained by Li = P−1Ki

and given by

L1 =

[
0.0803
−2.647
−25.098

]

, L2 =

[
1.4382
−0.1145
−4.3006

]

For comparison, it can be seen that the proposed approach
based on auxiliary dynamics performs better than the
three classical approaches (Lipschitz, MVT, qISS). In
terms of LMIs, only 2 LMIs are needed. In addition,
asymptotic convergence is obtained compared to the qISS
approach where only bounded error is guaranteed. Finally,
in the previous approaches, high gains may be obtained
since the objective is to counteract the nonlinear term
δ(t) while in the proposed approach the gains are not
high because there is no longer the nonlinear term δ(t)
to counteract.

5. FURTHER STUDY ON STATE EXTENSION

The main result of this paper aims to extend the state
dynamics in order to obtain a new system with state
dimension greater than the dimension of the original
system. The objective is to obtain a TS system having
measured premise variables. But it may happen that the
procedure does not provide a new system in finite iteration.
For details, let us consider the system

ẋ1 = x1x2 ẋ2 = −x1 − x2
2, y = x1 (33)

It is clear that if the sector nonlinear transformation is
used directly, the obtained TS system has premise variable
depending on x2 which is unmeasured. By applying the
proposed procedure, it can be seen that the number of



iterations is infinite which means that there is no solution.
In order to handle such a problem let us consider the first
step of the algorithm which leads to (z1, z2) = (x1, x2),
the time derivative of z1 gives ż1 = yz2. For this first
equation, it is in the adequate form. For z2 one obtains
ż2 = −z1 − z22 , it is necessary to define a new variable
z3 = z22 as suggested by the algorithm. By differentiating
this new variable it follows

ż3 = −2z1z2 − 2z32 = −2yz2 − 2z32 (34)

One has to define a new variable z4 = z32 . However, the
number of variable to be defined is infinite. In order to
overcome this problem, the second equation of the system

is modified equivalently as follows ż2 = −z1 − ϕ(y)
z2

2

ϕ(y) ,

where ϕ(y) is a function which depends only on measured

variable y. Then, the new variable to defined is z3 =
z2

2

ϕ(y)

instead of z3 = z22 . By choosing ϕ(y) = αz
β
1 , the time

derivative of z3 leads to

ż3 =
−2αz2z

β+1
1 − (2α+ αβ) zβ1 z

3
2

(

αz
β
1

)2 (35)

It is then easy to compute the variables α and β anni-
hilating the term z32 which cause the infinite iteration.
For this example, with α = 1 and β = −2, one obtains
ż3 = −2z31z2 = −2y3z2. Then, with one iteration the
algorithm gives the following system

[
ż1
ż2
ż3

]

=






0 y 0

−1 0 −
1

y2

0 −2y3 0






[
z1
z2
z3

]

(36)

Notice that this system is defined for y 6= 0 and the original
system is not observable for y 6= 0. The complexity in this
approach is to find the adequate function ϕ(y) because it
is not unique, the only objective to design this function
is to annihilate the eventual variables causing the infinite
iteration of the algorithm.

6. CONCLUSION

The problem of observer design for nonlinear systems via
TS systems is investigated. It is illustrated that before
transforming the original nonlinear system in a TS form,
it is more interesting to use the immersion techniques and
auxiliary dynamics in order to avoid the state dependent
premise variables. Indeed, using directly the sector nonlin-
ear transformation often leads to TS systems with unmea-
surable premise variables i.e. premise variables depending
of the unmeasured states of the system. An algorithm is
proposed by immersing the original nonlinear system in a
new system with dimension greater than or equal to the di-
mension of the original state space. The input-output map
is preserved with the coordinate transformation. Then, the
obtained new system is transformed, equivalently, in TS
system with measurable premise variables.
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