
Fault diagnosis for Takagi-Sugeno nonlinear
systems

Dalil Ichalal ∗ Benoit Marx ∗ Jośe Ragot∗ Didier Maquin ∗
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Abstract: This paper addresses a new scheme for fault diagnosis in nonlinear systems described by
Takagi-Sugeno multiple models. Two cases are considered, the first one concerns the T-S models with
known premise variables (the input or the output of the system). For the second case it is supposed that
the weighting functions depend on unmeasurable premise variables (state of the system). The approach
is based on the design of observer-based residual generatorby minimization of the disturbances effect
and maximizing the effects of the faults. The synthesis is based on theL2 formalism developed for linear
systems. The convergence conditions are given in LMI formulation.
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1. INTRODUCTION

Linear models are largely studied and an important literature is
devoted to this class of systems. Although they provide solu-
tions for many problems, nonlinear behavior are often present
in practical systems then reduce the domain of applicability
and the performances of the tools developed for linear models.
Indeed, a linear model only represents the behavior of the sys-
tem around a local operating point. It is known that nonlinear
systems are complex and difficult to study, so all the works on
the nonlinear systems concern only specific classes, but there is
no a general framework like for linear systems. One of the more
interesting classes of nonlinear systems is the Takagi-Sugeno
(TS) multiple model form which was introduced in Takagi and
Sugeno [1985]. It is proved in Tanaka and Wang [2001] that
often nonlinear behaviors can be represented exactly or approx-
imated by TS multiple models. The main advantage of these
models is the ability to extend the tools designed in the linear
system framework. Indeed, many topics of control are extended
to TS systems, such as stability and stabilization in Tanakaet al.
[1998], Guerra et al. [2006], Chadli et al. [2002], observers and
state estimation in Akhenak et al. [2007], Bergsten et al. [2002].

Due to an increasing demand for higher performances, as well
as for higher safety and reliability, the model-based approaches
to fault diagnosis for dynamic systems have received more
attention these last years Patton et al. [1989], Chen and Zhang
[1991], Chen et al. [1996], Ding and Frank [1989], Marx et al.
[2003]. Concerning the TS fuzzy systems few efforts have been
made in fault detection and isolation. Nevertheless we can cite
the method based on observers in Akhenak et al. [2007], Marx
et al. [2007].

In this paper an observer-based approach is developed for ro-
bust residual generator and diagnosis which minimizes the sen-
sitivity to the disturbances and maximizes the sensitivityto the
faults. Two cases are studied. The first case concerns the T-
S systems with measurable premise variables and the second
one deals with the systems with unmeasurable premise vari-
ables. The paper is organized as follows, section 2 gives some

notations and states the problem. Robust residual generation
is tackled in section 3. An LMI-based design of the residual
generator is proposed. The proposed observers are used for
RFD in section 4 and before concluding, a numerical example
is given.

2. PROBLEM STATEMENT

Consider the following continuous-time TS nonlinear system
subject to faultsf(t) and disturbancesd(t) given by


















ẋ(t) =
r
∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t) + Eid(t) + Fif(t))

y(t) =

r
∑

i=1

µi(ξ(t)) (Cix(t) + Diu(t) + Gid(t) + Rif(t))

(1)
whereAi ∈ Rn×n, Bi ∈ R

n×nu , Ci ∈ Rny×n, Di ∈ Rny×nu ,
Ei ∈ Rn×nd , Fi ∈ Rn×nf , Gi ∈ Rny×nd , andRi ∈ Rny×nf .

The weighing functionsµi are nonlinear and depend on the de-
cision variableξ(t) which can be measurable like{u(t), y(t)}
or not measurable like the statex(t) of the system. The weight-
ing functions satisfy the following properties:











0 ≤ µi(ξ(t)) ≤ 1
r
∑

i=1

µi(ξ(t)) = 1 (2)

Thus the structure of the multiple model is simple and is a
universal approximator since it can represent any nonlinear
behavior according to an adequate numberr of the local models
(chap 14 of Tanaka and Wang [2001]). The multiple model
structure provides a mean to generalize the tools developed
for linear systems to nonlinear systems due to the properties
expressed in (2).

The input signalsu(t), f(t) andd(t) belong inL2 set. TheL2-

norm ofu(t) ∈ L2 is given by‖u‖
2

=

√

+∞
∫

0

uT udt.



In the field of observer design and diagnosis of nonlinear sys-
tems using multiple model approach, Patton et al. [1998] pro-
posed an observer-based method to generate residual generator
and using an observer bank in order to achieve isolation, an
application to DC motor is proposed. In Akhenak et al. [2007], a
sliding mode observer for TS systems is proposed to detect and
estimate actuator faults. In these works, the authors assumed
that the weighting functions depend on measurable premise
variables (input or output) of the system. It is clear that the
choice of measurable premise variables offers a good simplicity
to generalize the methods already developed for linear systems.
But in the case where the premise variables are not measurable,
the problem becomes very hard. However, this formalism is
very important in both the exact representation of the nonlinear
behavior by multiple model (see the simulation example) and
in diagnosis method based on observer banks to detect and
isolate actuator and/or sensor faults. Indeed in this case,the
use of measurable premise variables requires to develop two
different multiple models, but using multiple models with un-
measurable premise variables allows to develop only one model
of the system behavior to detect and isolate both actuator and
sensor faults using observer banks. In the literature, few works
are devoted to the case of unmeasurable decision variables.
Nevertheless, we can cite Bergsten et al. [2002], Palm and
Bergsten [2000], where the authors proposed the fuzzy Thau-
Luenberger observer which is an extension of the classical
Luenberger observer. The main contribution of this paper is
to propose a method for fault diagnosis of nonlinear systems
described by TS models with measurable and unmeasurable
premise variables using the standardH∞ framework developed
for linear systems.

3. RESIDUAL GENERATOR DESIGN

The residual generator design for nonlinear systems described
by Takagi-Sugeno multiple model is addressed in this section.
Two cases are studied, the first case deals with TS models
where the decision variables are measurable and the second one
concerns TS models with unmeasurable decision variables.

3.1 case 1: measurable premise variables

Let consider the TS nonlinear system subject to disturbances
and sensor and actuator faults modeled in (1) An observer-
based residual generator is proposed in the following form



























˙̂x(t) =

r
∑

i=1

µi(ξ)(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =

r
∑

i=1

µi(ξ)(Cix̂(t) + Diu(t))

r(t) = M(y(t) − ŷ(t))

(3)

wherex̂(t) ∈ Rn is the estimated state vector andr(t) ∈ Rnf

is the residual signal that is structured in order to be sensitive
to the faultf(t). The matricesLi ∈ Rn×ny andM ∈ Rnf×ny

are the residual generator gains. The objective is to designthe
gainsLi and M in order to minimize the transfer from the
disturbancesw(t) and to maximize the transfer of the faults
f(t) to the residual signalr(t). Let define the state estimation
errore(t) = x(t) − x̂(t). Its dynamic is deduced from (1) and
(3) as follows

{

ė(t) = Aξe(t) + Eξd(t) + Fξf(t)
r(t) = Cξe(t) + Gξd(t) + Rξf(t)

(4)

where

Aξ =

r
∑

i=1

r
∑

k=1

µi(ξ)µj(ξ)(Ai − LiCk)

Eξ =
r
∑

i=1

r
∑

k=1

µi(ξ)µj(ξ)(Ei − LiGk)

Fξ =
r
∑

i=1

r
∑

k=1

µi(ξ)µj(ξ)(Fi − LiRk)

Cξ =

r
∑

i=1

µi(ξ)MCi, Gξ =

r
∑

i=1

µi(ξ)MGi,

Rξ =
r
∑

i=1

µi(ξ)MRi

(5)

For convenience, the system (4) can be written under the
following compact form

r = Grdd + Grff (6)

whereGrd represents the transfer from the disturbancesd(t) to
r(t) and defined by

Grd :=

(

Aξ Eξ

MCi Gξ

)

(7)

andGrf is the transfer fromf(t) to r(t) which is defined by

Grf =

(

Aξ Fξ

Cξ Rξ

)

(8)

In standardH∞ framework (see figure 1), the maximization of

System

r(t)
Residual Generator

re(t)

+

−

Wf

y(t)u(t)

f (t)d(t)

Fig. 1. Scheme of robust residual generation

the effect of the faultsf(t) on the residualr(t) can be expressed
as a minimization problem. Indeed, by introducing a weighting
parameterWf , the problem is reduced to a minimization of the
effect of the faults on the residual error

re(t) = r(t) − Wff(t) (9)

As explained in Stoustrup and Niemann [2000] the FDI prob-
lem depends on the selected structure of the weight parameter
Wf . Indeed, the fault estimation problem is obtained when
Wf = I and the detection problem is considered whenWf ∈
R1×nf . In addition,Wf can be chosen as a dynamic parameter.
Consider the parameterWf defined

Wf =

(

Af Bf

Cf Df

)

(10)

Wf ∈ S whereS is the set of stable filters which have the
following property

‖Wf‖− = infw∈R (σ (Wf (jw))) ≥ 1 (11)

(see Mazars et al. [2008] and Mazars et al. [2006] for more
details). The interest of this kind of filters is that there isno



attenuation of the faults but only an amplification on all fre-
quency ranges which improves the problem of fault detection.
The detection, isolation and estimation of the faults can be
considered by an appropriate choice of the matricesAf , Bf , Cf

andDf . The FDI problem is then formulated as the following
multi-objective optimization problem

Obtain Li and M which minimize aγf + (1 − a)γd where
a ∈ [0 1] subject to the following constraints

‖Grf − Wf‖∞ < γf (12)

‖Grd‖∞ < γd (13)

System (4) is stable (14)

The theorem 1 gives an LMI method to solve the optimization
problem and provides the residual generator gainsLi andM .

Theorem 1.Given a positive parametera ∈ [0, 1] and a weight-
ing functionWf ∈ S. The residual generator (3) exists if there
exist matricesP1 = PT

1 > 0, P2 = PT
2 > 0 and gain

matricesKi andM and positive scalars̄γf andγ̄d solution of
the following optimization problem

min
Li,M,P1,P2,Ki,γ̄f ,γ̄d

aγ̄f + (1 − a)γ̄d

s.t.






X1

ik 0 P1Fi − KiRk CT
k MT

0 X2

f P2Bf −CT
f

F T
i P1 − RT

k KT
i BT

f P2 −γ̄f I RT
k MT

− DT
f

MCk −Cf MRk − Df −I







< 0

(15)
(

X1

ik P1Ei − KiGk CT
k MT

ET
i P1 − GT

k KT
i −γ̄dI GT

k MT

MCk MGk −I

)

< 0 (16)

where
X1

ik = AT
i P1 + P1Ai − KiCk − CT

k KT
i (17)

X2

f = AT
f P2 + P2Af (18)

∀i, k = 1, . . . , r

The gainsLi are derived from

Li = P−1

1 Ki i = 1, ..., r (19)

and the attenuation levels are given by

γd =
√

γ̄d γf =
√

γ̄f (20)

Proof. In faulty case without disturbances the residual gen-
erator is reduced tor = Grff . In order to maximize the
effects of faults on the residual we consider the weighting stable
filter Wf (s) defined in (10). Then the maximization problem
can be formulated as a minimization problem by solving (12).
Grf − Wf can be written in the following form

Grf − Wf :=





Aξ 0 Fξ

0 Af Bf

Cξ −Cf Rξ − Df



 (21)

Let define a positive and symmetric bloc diagonal matrix

P =

(

P1 0
0 P2

)

(22)

Using the bounded real lemma Boyd et al. [1994], the condition
(12) is formulated as follows






AT
ξ P1 + P1AT

ξ 0 P1Fξ CT
ξ

0 AT
f P2 + P2AT

f P2Bf −CT
f

F T
ξ P1 BT

f P2 −γ2

f I RT
ξ − DT

f

Cξ −Cf Rξ − Df −I







< 0 (23)

Using the definitions (5) of the matricesAξ, Fξ, Cξ andRξ

and the convex property of the weighing function, the following
inequalities are obtained from (23)






X1

ik 0 P1Fi − P1LiRk CT
k MT

0 X2

f P2Bf −CT
f

F T
i P1 − RT

k KT
i BT

f P2 −γ2

f I RT
k MT

− DT
f

MCk −Cf MRk − Df −I







< 0

(24)
where

X1

ik = AT
i P1 + P1Ai − P1LiCk − CT

k LT
i P1 (25)

X2

f = AT
f P2 + P2AT

f (26)

i, k = 1, . . . , r

In order to obtain the linear matrix inequality (15), we use the
change of variablesKi = P1Li andγ̄f = γ2

f andγ̄d = γ2
d .

In the fault-free case with disturbances, a similar way, by using
the bounded real lemma, allows to obtain the LMI (16). The
block (1, 1) of the the LMI (16) ensures the stability of the
observer (i.e. the system (4) is stable) and the robustness against
disturbances.

Now, in the faulty case with disturbances, the relative im-
portance of minimizing the effects of the disturbances and
maximizing the effects of the faults on the residual signal
can be expressed as a minimization of the linear combination
aγf + (1 − a)γd wherea ∈ [0 1].

3.2 case 2: unmeasurable premise variables

In this section, it is assumed that the weighting functionsµi

of the TS nonlinear system (1) depend on the unmeasurable
statex(t) of the system. The weighting functions of the residual
generator then depend on the estimated statex̂(t) as follows



























˙̂x(t) =

r
∑

i=1

µi(x̂)(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =

r
∑

i=1

µi(x̂)(Cix̂(t) + Diu(t))

r(t) = M(y(t) − ŷ(t))

(27)

By adding and subtracting the term
r
∑

j=1

µj(x̂(t)) (Ajx(t) + Bju(t))

in state equation of the system (1) and the term
r
∑

j=1

µj(x̂(t)) (Cjx(t) + Dju(t))

in the output equation of (1) and by some manipulations using
the convex property of the weighting functions (2) the following
equivalent system is obtained






















ẋ(t) =

r
∑

i=1

r
∑

j=1

µi(x)µj(x̂)(Ãijx(t) + B̃iju(t)+Eid(t) + Fif(t))

y(t) =

r
∑

i=1

r
∑

j=1

µi(x)µj(x̂)(C̃ijx(t) + D̃iju(t) + Gid(t) + Rif(t))

(28)
where

Ãij = Aj + ∆Aij , C̃ij = Cj + ∆Cij

B̃ij = Bj + ∆Bij , D̃ij = Dj + ∆Dij

and
∆Xij = Xi − Xj , Xi ∈ {Ai, Bi, Ci,Di}



i, j = 1, ..., r
After calculating the dynamic of the state estimation error, the
following is obtained
{

ė(t) = Ãxx̂e(t) + ∆Ãxx̂x(t) + B̃xx̂d̃(t) + F̃xx̂f(t)

r(t) = C̃xx̂e(t) + ∆C̃xx̂x(t) + G̃xx̂d̃(t) + R̃xx̂f(t)
(29)

Using the simplified notation
r
∑

i,j,k=1

µiµ̂j µ̂k

instead of
r
∑

i=1

r
∑

j=1

r
∑

k=1

µi(x)µj(x̂)µk(x̂)

the matrices of (29) are defined by

Ãxx̂ =
r
∑

i,j,k=1

µiµ̂jµ̂k(Aj − LjCk)

B̃xx̂ =
r
∑

i,j,k=1

µiµ̂jµ̂k [ (∆Bij − Lj∆Dik) (Ei − LjGi) ]

F̃xx̂ =
r
∑

i,j,k=1

µiµ̂j µ̂k(Fi − LjRi)

C̃xx̂ =
r
∑

i,j,k=1

µiµ̂j µ̂kMCk,

G̃xx̂ =
r
∑

i,j,k=1

µiµ̂j µ̂k[M∆Dik MGi]

R̃xx̂ =
r
∑

i,j,k=1

µiµ̂j µ̂kMRi

∆Ãxx̂ =

r
∑

i,j,k=1

µiµ̂j µ̂k(∆Aij − Lj∆Cik)

∆C̃xx̂ =

r
∑

i,j,k=1

µiµ̂jµ̂kM∆Cik

d̃(t) =
[

u(t)T d(t)T
]T

Let define the augmented state vectorx̃ = [eT xT ]T . Then
from (29) The residual vectorr is then given by

r = Grdd̃ + Grff (30)
where

Grd =





Ãxx̂ ∆Ãxx̂ B̃xx̂

0 Ax B̃x

C̃xx̂ ∆C̃xx̂ G̃xx̂



 (31)

and

Grf =





Ãxx̂ ∆Ãxx̂ F̃xx̂

0 Ax Fx

C̃xx̂ ∆C̃xx̂ R̃xx̂



 (32)

Ax =

r
∑

i=1

µi(x)Ai, Fx =

r
∑

i=1

µi(x)Fi

B̃x =

r
∑

i=1

µi(x) [ Bi Ei ]

The FDI problem is the same as the problem given in (12)-(14).
In order to determine the gainsLi andM of the residual gener-
ator (27), the theorem 2 gives an LMI solution of the problem
(12)-(14) extended to TS nonlinear systems with unmeasurable
premise variables.

Theorem 2.Given a positive parametera and a weighting func-
tion Wf . The residual generator (3) exists if there exist matrices
P1 = PT

1 > 0, P2 = PT
2 > 0 and gain matricesKi andM and

positive scalars̄γ1 andγ̄2 solution of the following optimization
problem

min
Li,M,P1,P2,Ki,γ̄f ,γ̄d

aγ̄f + (1 − a)γ̄d

s.t.








X1

jk Ξijk 0 P1Fi − KjRi CT
k MT

∗ X2

i 0 P2Fi ∆CT
ikMT

∗ ∗ X3

f P3Bf −CT
f

∗ ∗ ∗ −γ̄f I (MRi − Df )T

∗ ∗ ∗ ∗ −I









< 0 (33)









X1

jk Ξijk P1∆Bij − Kj∆Dik P1Ei − KjGi CT
k MT

∗ X2

i P2Bi P2Ei ∆CT
ikMT

∗ ∗ −γ̄
d̃
I 0 ∆DT

ikMT

∗ ∗ ∗ −γ̄
d̃
I GT

i MT

∗ ∗ ∗ ∗ −I









< 0

(34)
where

X1

jk = AT
j P1 + P1Aj − KjCk − CT

k KT
j (35)

X2

i = AT
i P2 + P2Ai (36)

X3

f = AT
f P3 + P3Af (37)

Ξijkl = P1∆Aij − Kj∆Cik (38)

∀i, j, k = 1, . . . , r

The gainsLi are derived from

Li = P−1

1 Ki i = 1, ..., r (39)

and the attenuation levels are given by

γd =
√

γ̄d γf =
√

γ̄f (40)

Proof. After calculating the augmented system with̃x =
[eT xT xT

f ]T by including the filterWf which hasxf as a
state vector and calculatingre(t) = r(t) − rf (t) whererf (t)
is the output of the filterWf (see figure 1), the proof follows
exactly the steps which have been given for the proof of the
theorem 1.

Remark 1.Note that the theorem 2 is more general that the
theorem 1. Indeed, if the weighting functionsµi of the system
(1) depend on measurable premise variables, the problem given
in the theorem 1 can be deduced from the theorem 2 by taking
i = j. When the premise variable is the state of the system,
if C1 = C2 = ... = C and the number of the sub-modelsr
is important, it might be, therefore, difficult to find a common
matrixP defined by

P =

(

P1 0 0
0 P2 0
0 0 P3

)

(41)

satisfying the conditions of theorem 2 (see remark 6.1 in Tanaka
et al. [1998]).

4. ROBUST FAULT DIAGNOSIS

Due to the presence of exogenous disturbances, the residual
signals are different from zero even in the fault-free case.In
the framework of fault detection, a threshold based on the
obtained attenuation levelsγf andγd is generated. An alarm
is generated by comparison between the residual signalsr(t)
and the threshold. A fixed threshold is determined as follows

Jth = γdρ (42)



whereρ is the bound ofd(t) in the measurable premise vari-
ables case and it represent the bound ofd̃(t) in the unmeasur-
able premise variables. The decision logic is given by

{

|ri(t)| < Jth ⇒ no fault
|ri(t)| > Jth ⇒ fault (43)

In order to improve the fault detection, a residual generator can
be constructed for each fault separately. Each residual generator
is designed to minimize the transfer fromfi to rei = ri −
Wfifi, i = 1, ..., nf .

In the unmeasurable premise variables case, the system is seen
as an uncertain system. The inputu(t) then appear in the
dynamic of state estimation error. The method proposed in this
paper considers the inputu(t) as a perturbation asd(t) and by
considering the new perturbation vectord̃(t) = [u(t)T d(t)T ]T

the problem is solved. It is clear that considering the input
u(t) as a perturbation penalizes the fault detection because
the computed threshold depends on the upper bound ofd̃(t).
Using the method proposed in Casavola et al. [2008] for linear
systems with polytopic uncertainties whereu(t) is considered
as a perturbation to minimize separately fromd(t). Indeed,
instead of minimizing the index(aγ̄f + (1 − a)γ̄d̃) under the
LMI constraints, the index which has been used in Casavola
et al. [2008] described by(aγ̄f + bγ̄d + cγ̄u) can be used.
An adaptive threshold can be then generated using a time-
windowed rms-norm (see Casavola et al. [2008], Frank and
Ding [1997]).

It is often considered that the fault vectorf(t) has two com-
ponents, the first one notedfa(t) represent the vector of the
faults affecting only the actuator, thus, they appear in thestate
equation. The second component notedfs(t) is the vector of
the faults affecting only the sensors. The output of the system
is always given by

y(t) =
r
∑

i=1

µi(ξ) (Cix(t) + Diu(t) + Gid(t) + Rif(t))

(44)
but in the case where the faultsfa(t) do not affect the output of
the system, the matricesRi are not full rank. As pointed out in
(Stoustrup and Niemann [2000]), in this case, whereWf = I
the attenuation levelγf becomes greater than1 the problems in
theorem 1 and 2 does not have a solution. In order to avoid this
problem, a perturbation term is added in the output equationas
follows

y(t) =

r
∑

i=1

µi(ξ)

(

Cix + Diu + Gid +
[

εi R1

i

]

[

fa

fs

])

(45)

whereεi are the matrices of distribution of the actuator faults
fa(t) in the output equation and are chosen as small as possible.
However, in the context of fault isolation, this approach may
generate false alarms. To improve the isolation results, we
propose to add and subtract the perturbation term and make
the added term to ensure the full rank ofRi and consider the
subtract term as a perturbation to minimize

y(t) =

r
∑

i=1

µi(ξ)

(

Cix + Diu + Ḡid̄ + R̄i

[

fa

fs

])

(46)

where

Ḡi = [ Gi bεi ] , R̄i =
[

εi R1
i

]

, d̄ =

[

d

−fa

b

]

where b is a positive real parameter. Using this second ap-
proach, the thresholdJth is calculated by using the bound of

the new perturbation vector̄d(t), thus the fault isolation is
improved.

5. NUMERICAL EXAMPLE

The proposed algorithm of robust diagnosis is illustrated by
an academic example. Let consider the nonlinear system (1)
defined by

A1 =

[

−2 1 1
1 −3 0
2 1 −8

]

, A2 =

[

−3 2 −2
5 −3 0
1 2 −4

]

,

B1 =

[

1
5

0.5

]

, B2 =

[

3
1
−1

]

, E1 =

[

0.5
1
1

]

, F1 =

[

0 1
0 0
0 1

]

,

F2 =

[

0 1
0 1
0 0

]

, E2 =

[

0 1
0 0.3
0 0.5

]

,

and

C =

[

1 1 1
1 0 1

]

, G =

[

0.5
1

]

, R =

[

1 0
0 0

]

The weighting functionsµi are defined as follows
{

µ1(u(t)) =
1 − tanh((u(t) − 1)/10)

2
µ2(u(t)) = 1 − µ1(u(t))

(47)

The unknown input vectord(t) affects the outputs of the system
and its dynamic. The first component of the vectorf(t) is a
sensor fault and the second component is an actuator fault.
Wf is chosen to be a diagonal of first order low-pass filters.
For each fault, a dedicated residual generator is designed as
mentionned above. The resolution of the problem in theorem
1 with a = 0.9 results inγd = 2.1426 andγf = 0.5481 for the
first residual generator and for the second residual generator, we
choosea = 0.99, ǫ = [0 0.08]T andb = 10. The solution of the
problem in theorem 1 results inγd = 8.2658 andγf = 1.5780.
The obtained residuals are displayed on figure 2. The residual
r1(t) is sensitive only to the first component of the fault vector
(sensor fault) and the second residualr2(t) is only sensitive to
the second fault (actuator fault). The filterWf allows to amplify
the sensitivity of the residuals to the faults.

A second simulation is performed in order to estimate the
faults.Wf is then chosen an identity matrix. The original and
estimated faults are depicted in figure 3.
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Fig. 2. Faults and corresponding residual signals
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Fig. 3. Faults (dashed lines) and their estimations (solid lines)

6. CONCLUSION

Considering nonlinear systems represented by TS systems, two
methods for observer-based residual generator (RG) designare
proposed. One is devoted to the systems where the premise vari-
ables depend on the measured variables such as the input or the
output of the system. The other one concerns the systems which
premise variables depend on the unmeasured state variables.
Sufficient conditions for the existence of RG were established
in the LMI formalism in order to ease RG design and obtain
the gains. The conservatism of the conditions proposed in the
theorem 2 in the case where the premise variable is the state of
the system will be studied in future works in order to propose
less conservative conditions for residual generators design by
using, for example, a non-quadratic Lyapunov function.
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