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Abstract— In this paper, a proportional integral (PI) and a
proportional multiple integral observer (PMI) are proposed
in order to estimate the state and the unknown inputs of
nonlinear systems described by a Takagi-Sugeno model with
unmeasurable premise variables. This work is an extension
to nonlinear systems of the PI and PMI observers developed
for linear systems. The state estimation error is written as a
perturbed system. First, the convergence conditions of the state
estimation errors between the system and each observer are
given in LMI (Linear Matrix Inequality) formulation. Secondly,
a comparison between the two observers is made through an
academic example.

I. INTRODUCTION

Model-based approaches have been important and useful
means to construct a fault diagnosis module for nonlinear
systems in order to detect, isolate and identify actuator,
sensor and system faults. Generally, the implementation of
these functions is realized with observers. Moreover, ob-
servers provide an estimation of accessible and inaccessible
states, outputs and faults of nonlinear systems. The estimated
signals are used for example to elaborate feedback control
laws, fault detection and isolation procedure (FDI) and fault
tolerant control (FTC) [18], [10].

The proposed work focuses on the class of nonlinear
systems described by Takagi-Sugeno models [22] with un-
measurable premise variables. The T-S model provides a
useful tool to represent with a good precision a large class of
nonlinear systems [23] and can even describe exactly certain
classes of nonlinear systems [24] by using the nonlinear sec-
tor transformation. In the recent years, considerable efforts
have been provided to study stability and stabilization of
this class of systems [14], [23], [8], [5]. The topic of state
estimation has also been widely studied in many works. In
[2], [19], [16], [3], the authors proposed different methods
in order to estimate the state of T-S systems for the purpose
of diagnosis.

The main advantage of T-S structure is its simplicity
because it originates from the interpolation between linear
systems. Thus, analysis and design methods developed for
linear systems can be generalized to nonlinear systems as
used in the works cited above.
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In the context of robust observer design, one of the most
successful technique is the use of PI observer, in which
the unknown inputs are estimated simultaneously with the
states of the system. The PI observer was first proposed by
Wojciechowsky in [25] for single input-single output LTI sys-
tems. A generalization scheme was performed by Kaczorek
[12] to multivariable systems. Thereafter, the PI observerhas
been used in different studies. In [20] a linear PI observer
is designed and applied to a physical system. In [15] a PI
observer for linear descriptor systems is proposed. However,
this observer can be used only if the unknown inputs are
constant over the time, nevertheless in practical cases the
approach is effective if the variations of the unknown inputs
are slow in respect to the dynamic of the system. In other
cases, this problem can be solved by using multiple integrals
in the observer in order to estimate all of the derivatives of
the unknown inputs. A PMI observer was firstly proposed
by Jiang in [11]. In [7], [13] a proportional multiple integral
observer is proposed to estimate a large class of signals
described in a polynomial form for LTI descriptor systems.
An other paper [9], presented in the same conference, deals
with the state estimation using a new method consisting
in the transformation of the TS system with unmeasurable
premise variables into an uncertain TS system with estimated
premise variables, in addition, the method is extended to
estimate the unknown input using a PI observer.

We propose, in this paper, a generalization of the PI and
PMI observers to nonlinear systems described by T-S models
with unmeasurable premise variables. The paper is organized
as follows. Section II presents the T-S structure and the
problem of state estimation, and gives the motivation of this
work. In section III.A the design of PI observer is addressed
and in section III.B the PMI observer is studied. Section
IV presents a numerical example with discussion about the
performances of the two proposed observers. Finally, this
note is ending with conclusions and perspectives. The idea is
based on two steps: the first step consists to transform the TS
system with unmeasurable premise variable into a perturbed
TS system with estimated premise variable. The perturbation
term is due to the unmeasurable premise variable. The second
step is to make the system in an augmented form by adding
integrators to estimate the unknown input.



II. PRELIMINARIES AND PROBLEM STATEMENT

A. Multiple model approach

Consider the following general form of continuous-time
nonlinear systems:

{

ẋ(t) = f (x(t),u(t))
y(t) = h(x(t),u(t))

(1)

where x ∈ R
n, u ∈ R

m, y ∈ R
q and f and h are nonlinear

functions. The representation (1) is difficult to study, else-
where in literature, all of the works developed concerning
the nonlinear systems concern specific classes. For example,
in [1], [21], Lipschitz systems, which are represented by a
linear part and a nonlinear one, are considered. The nonlinear
part is assumed to be Lipschitz with respect to the statex.

As mentioned in the introduction, the T-S model ap-
proach is a very interesting method to represent nonlinear
systems. Different methods exist to obtain a T-S model,
as identification or linearization of the system (1) around
different operating points or by using the nonlinear sector
transformation. The multiple model structure is given by:






ẋ(t) =
r
∑

i=1
µi(ξ (t))(Aix(t)+Biu(t)+Eid(t)+Wiω(t))

y(t) = Cx(t)+Du(t)+Gd(t)+Wω(t)
(2)

whereAi ∈R
n×n, Bi ∈R

n×m, C ∈R
q×n, D∈R

q×m, Ei ∈R
n×s,

Wi ∈R
n×v andG∈R

q×s, andW ∈R
q×v. The unknown inputs

are modeled byd(t) and ω(t) are the noises affecting the
state and the measurement equation. In this structure, the
output is assumed to be linear with regard to the state of the
system. The weighing functionsµi are nonlinear and depend
on the decision variableξ (t) which can be measurable
like {u(t),y(t)} or not measurable like the statex(t) of
the system. The weighting functions satisfy the following
properties:







0≤ µi(ξ (t)) ≤ 1
r
∑

i=1
µi(ξ (t)) = 1 (3)

Thus the structure of the multiple model is simple and is
considered as a universal approximator since it can represent
any nonlinear behavior according to an adequate numberr of
submodels. The multiple model structure provides a mean to
generalize the tools developed for linear systems to nonlinear
systems due to the properties expressed in (3).

B. Problem statement

Diagnosis of nonlinear systems is often based on a bank of
observers to detect and isolate actuator and sensor faults.For
designing observers, it is often assumed, in the literaturethat
the weighting functionsµi depend on measurable premise
variables u and/or y. Thus, to perform diagnosis, it is
necessary to develop two different multiple models. The first
one where the weighting functions depend only on the output
of the system in order to detect and isolate actuator faults.
The second one with weighting functions depending only on
the input of the system in order to detect and isolate sensor
faults. To reduce this difficulty, it is interesting to develop

only one multiple model using weighing functions which
depend on the state of the system. Thus, the same multiple
model can be used to construct observer bank for detecting
and isolating both actuator and sensor faults. However, the
main difficulty is due to the fact that the state equation is now
a nonlinear function of the state. In the literature, only few
works are developed for observer design for T-S systems with
unmeasurable premise variables. Nevertheless, we can cite
[16], [17], [26], [4], where the authors re-write the system
either as a perturbed or uncertain T-S system with measurable
premise variables.

III. MAIN RESULT

Along this paper, we assume that the following assump-
tions hold:

• A1. The system is stable
• A2. The signalsu(t), d(t) andω(t) are bounded.

Practically, these assumptions are often not restrictive.

A. Extension of classical PI observer

Consider the following T-S fuzzy system with weighting
functionsµi depending on the state of the system:






ẋ(t) =
r
∑

i=1
µi(x(t))(Aix(t)+Biu(t)+Eid(t)+Wiω(t))

y(t) = Cx(t)+Gd(t)+Wω(t)
(4)

In the next, for sake of simplicity, the time variablet is
omitted.

In this section, the unknown inputsd(t) are assumed to
be constant:

• A3. ḋ = 0

This assumption will be relaxed in the section III.B.
The proposed PI observer is given by the following

equations:


















˙̂x =
r
∑

i=1
µi(x̂)

(

Aix̂+Biu+Eid̂ +KPi(y− ŷ)
)

ŷ = Cx̂+Gd̂
˙̂d =

r
∑

i=1
µi(x̂)KIi(y− ŷ)

(5)

where ˆx and d̂ are the estimates ofx and d. In order
to facilitate the comparison between the system and its
observer, the system (4) can be written as a perturbed system
with weighting functionsµi depending on the estimated state
as follows:

ẋ =
r

∑
i=1

µi(x̂)(Aix+Biu+Eid +Wiω +ν) (6)

where:

ν =
r

∑
i=1

(µi(x)−µi(x̂))(Aix+Biu+Eid +Wiω) (7)

This term is seen as a bounded vanishing perturbation to
minimize. Indeed, due to the assumptions A1, A2 and the
definition of the weighting functions (3),ν(t) is bounded
and if x̂ → x thenν → 0.



The assumptionA3 allows to make the system (6) in the
augmented form:







ẋa =
r
∑

i=1
µi(x̂)

(

Ãixa + B̃iu+ Γ̃iω̃
)

y = C̃xa + D̃ω̃
(8)

where:

Ãi =

[

Ai Ei

0 0

]

, B̃i =

[

Bi

0

]

, Γ̃i =

[

I Wi

0 0

]

, ω̃ =

[

ν
ω

]

C̃ =
[

C G
]

, D̃ =
[

0 W
]

,xa =

[

x
d

]

A similar reasoning makes it possible to transform the
proposed PI observer (5) in the following augmented form:







˙̂xa =
r
∑

i=1
µi(x̂)

(

Ãix̂a + B̃iu+ K̃i(y− ŷ)
)

ŷ = C̃x̂a

(9)

where:

K̃i =

[

KPi

KIi

]

Let us consider the augmented state estimation error:

ea = xa − x̂a (10)

whose dynamics is given by:

ėa =
r

∑
i=1

µi(x̂)
(

(Ãi − K̃iC̃)ea +(Γ̃i − K̃iD̃)ω̃
)

(11)

The goal is to determine the gain matricesK̃i of the
observer in order to stabilize the system (11), i.e. to guar-
antee the convergence of the state estimation error toward
zero when the perturbatioñω is nul and to attenuate the
transfer gain from the bounded perturbationω̃(t) to the state
estimation errorea(t) whenω̃(t) is different from zero (̃ω(t)
is bounded since assumptionsA1 andA2 are satisfied).

In order to establish the existence conditions of the PI
observer in theorem 1, let us first introduce the following
lemma:

Lemma 1: [24] Consider the continuous-time TS-system
defined by:







ẋ(t) =
r
∑

i=1
µi(x(t))(Aix(t)+Biu(t))

y(t) = Cx(t)
(12)

The system (12) is stable and verifies theL2-gain condition:
||y(t)| |2 < γ ||u(t)| |2 if there exists a symmetric positive
definite matrixP such that (13) is satisfied fori = 1, ...,r:

[

AT
i P+PAi +CTC PBi

BT
i P −γ2I

]

< 0 (13)

Theorem 1: The PI observer (9) for the system (8) is
determined by minimizinḡγ under the following LMI con-
straints in the variablesP = PT > 0, Mi and γ̄ for i = 1, ...,r:

[

ÃT
i P+PÃi −MiC̃−C̃T Mi + I PΓ̃i −MiD̃

Γ̃T
i P− D̃T MT

i −γ̄I

]

< 0 (14)

The gains of the observer are derived from̃Ki = P−1Mi and
the attenuation level is calculated byγ =

√
γ̄.

Proof: According to the assumptionsA1 andA2, ω̃(t)
is bounded. Then, by applying lemma 1 with||ea(t)| |2 <

γ ||ω̃(t)| |2, we obtain:
[

ÃT
i P+PÃi −PK̃iC̃−C̃T K̃T

i P+ I PΓ̃i −PK̃iD̃
Γ̃T

i P− D̃T K̃T
i P −γ2I

]

< 0

(15)
The LMI formulation in theorem 1 is obtained by using the
following changes of variables:

Mi = PK̃i, γ̄ = γ2

Remark 1: The minimization of γ may result in slow
dynamics of the state estimation error. This problem can be
solved by pole assignment of the matrices(Ãi − K̃iC̃) in the
left half complex plane defined by:

{z | Re(z) < −λ}, λ > 0 (16)

Thus, the LMIs in theorem 1 are solved simultaneously with
the following constraint (to imposeRe(λi) < −λ , whereλi

are the eigenvalues of̃Ai andλ > 0):

P(Ãi +λ I)+(Ãi +λ I)T P−MiC̃−C̃T MT
i < 0 (17)

More precise pole clustering can be obtained by adding
LMI constraints [6].

This approach remains effective in practical cases where
the assumption 1 is not satisfied. However, the unknown
inputs must vary slowly. Otherwise, bad state and unknown
inputs estimation are obtained by using this method. In the
next section, another method to estimate the state and the
unknown inputs is proposed. It is based on the proportional
multiple integral observer. This observer is interesting be-
cause the assumptionA3 is not required in the theoretic
proof, so it is possible to estimate a larger class of unknown
inputs.

B. Proportional multiple integral observer

Let us consider the multiple model with unmeasurable
premise variables described in (4). The unknown input is
assumed to be a bounded time varying signal with nullqth

derivative:

• A4. d(q)(t) = 0



Generally, the use of a PI observer requires the condition
that the unknown input is constant (i.e.:ḋ = 0), thus, the
unknown inputs which satisfiesA4 cannot be estimated with
a good precision. Then, PMI observer is more adequate for
this problem, because the observer estimates the(q− 1)th

derivatives of the unknown input and gives a good precision
of the estimated unknown inputs.

Consider the generalization of the proportional multiple-
integral observer to T-S systems of the PMI observer pro-
posed in [7] for linear descriptor systems:















































































˙̂x =
r
∑

i=1
µi(x̂)(Aix̂+Biu+Eid̂0 +KPi(y− ŷ))

ŷ = Cx̂+Gd̂
˙̂d0 =

r
∑

i=1
µi(x̂)K0

Ii(y− ŷ)+ d̂1

˙̂d1 =
r
∑

i=1
µi(x̂)K1

Ii(y− ŷ)+ d̂2

...
˙̂dq−2 =

r
∑

i=1
µi(x̂)K

q−2
Ii (y− ŷ)+ d̂q−1

˙̂dq−1 =
r
∑

i=1
µi(x̂)K

q−1
Ii (y− ŷ)

(18)

whered̂i, i = 1,2, ...,(q−1) are the estimation of the(q−1)
first derivatives of the unknown inputd(t).

The state and unknown inputs estimation errors are:

e = x− x̂, e0 = ḋ − ˙̂d0, . . . , eq−1 = ḋq−1− ˙̂dq−1

Their dynamics are given in the following form:






































































ė =
r
∑

i=1
µi(x̂)((Ai −KPiC)e+(Γi −KPiW̄ )ω̃ +(Ei −KPiG)e0)

ė0 =
r
∑

i=1
µi(x̂)(−K0

IiCe+ e1−K0
IiW̄ ω̃ −K0

IiGe0)

ė1 =
r
∑

i=1
µi(x̂)(−K1

IiCe+ e2−K1
IiW̄ ω̃ −K1

IiGe0)

...

ėq−2 =
r
∑

i=1
µi(x̂)(−K0

IiCe+ eq−1−Kq−2
Ii W̄ ω̃ −Kq−2

Ii Ge0)

ėq−1 =
r
∑

i=1
µi(x̂)(−Kq−1

Ii Ce−K0
IiW̄ ω̃ −Kq−1

Ii Ge0)

(19)
where:

Γi =
[

In Wi
]

,W̄ =
[

0 W
]

The equations (19) can be rewritten in the following
augmented form:

˙̃e =
r

∑
i=1

µi(x̂)((Ãi − K̃iC̃)ẽ+(Γ̃i − K̃iW̄ )ω̃) (20)

[

e
e0

]

= C̄ẽ (21)

where:

ẽ =

















e
e0
e1
...

eq−2
eq−1

















, Ãi =





















Ai Ei 0 · · · 0 0
0 0 Is · · · 0 0

0 0 0
... 0 0

...
...

...
...

...
...

0 0 0 0 0 Is
0 0 0 0 0 0





















, K̃i =



















KPi
K0

Ii
K1

Ii
...

Kq−2
Ii

Kq−1
Ii



















C̃ =
[

C G 0 · · · 0 0
]

Γ̃i =
[

ΓT
i 0 ... 0

]T

In the following, we are only interested with particular
componente ande0 of ẽ:

[

e
e0

]

= C̄ẽ (22)

where:

C̄ =

[

In 0
0 Is

0 · · · 0

]

0 represents null matrix with appropriate dimensions.
Theorem 2: The PMI observer (18) for the system (8)

that minimizes the transfer from̃ω(t) to [e(t)T e0(t)T ]
is obtained by finding the matricesP = PT > 0, Mi and γ̄
that minimize γ̄ under the following LMI constraints for
i = 1, ...,r:

[

ÃT
i P+PÃi −MiC̃−C̃T MT

i +C̄TC̄ PΓ̃i −MiW̄
Γ̃T

i P−W̄ T MT
i −γ̄I

]

< 0

(23)
The gains of the observer are derived from:

K̃i = P−1Mi (24)

and the attenuation level is calculated by:

γ =
√

γ̄ (25)
Proof: The proof of theorem 2 is similar to the proof

of theorem 1 by using the lemma 1 with the system (20)
Remark 2: When the conditionA3 is not satisfied i.e.

d(q) 6= 0 but d(q) is bounded then, we can consider theqth

derivative of d(t) as a perturbation. The new perturbation
vector is then given by:

ω̃(t) =
[

ν(t)T ω(t)T d(q)(t)T
]T

The additional componentdq is added in the state vector. The
matricesÃi, Γ̃i, W̄ , C̃ are augmented. Then, the Theorem 2
can be applied in order to design the Proportional Multiple
Integral Observer with minimization of the new bounded
perturbationω̃(t).



IV. NUMERICAL EXAMPLE AND SIMULATIONS
In this section, the proposed method is illustrated through

an academic example. Consider a continuous-time T-S sys-
tem (4) defined by:

A1 =





−2 1 1
1 −3 0
2 1 −8



 , A2 =





−3 2 −2
5 −3 0
1 2 −4



 ,

B1 =





1
5

0.5



 , B2 =





3
1
−7



 , E1 =





0 7
0 5
0 2



 ,

E2 =





0 6
0 3
0 1



 , W1 = W2 =





1
1
1



 , W =

[

0.5
0.5

]

,

and

C =

[

1 1 1
1 0 1

]

, G =

[

5 0
1 0

]

The unknown input vectord(t) is made up ofd1(t) which
affects the outputs of the system andd2(t) affecting the
dynamics of the system (see the matricesE1, E2 and G).
For example, we can considerd1 as a sensor fault andd2 as
an actuator one.

The weighting functions depend on the first componentx1

of the state vectorx and are defined as follows:
{

µ1(x) = 1−tanh(x1)
2

µ2(x) = 1−µ1(x)
(26)

The weighting functions obtained without perturbations
and unknown inputs are shown in figure 1. This figure shows
that the system is clearly nonlinear sinceµ1 and µ2 are not
constant functions.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
µ

1
(t)

µ
2
(t)

Fig. 1. Weighting functionsµ1 and µ2

The perturbationω is chosen as random signal uniformly
distributed in [−0.5 0.5]. The considered unknown inputs
d1(t) andd2(t) are time varying signals with neglected fourth
derivatives. After synthesizing a PI observer according tothe
theorem 1 and a PMI observer withq = 4 according to the
theorem 2, we obtain the simulation results depicted in the
figures 2, 3, 4 and 5.

Figures 2 and 3 show the unknown input and their es-
timations with PI and PMI observers. It is known that the
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Fig. 2. Unknown input estimation with a PI observer
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Fig. 3. Unknown input estimation with a PMI observer

PI observer gives an acceptable state and unknown inputs
estimation even if the assumptionA3 is not satisfied. How-
ever, in this example, the unknown inputs have fast variations
resulting on bad state and unknown inputs estimation (figures
2 and 4) compared to the results given by the PMI observer
(figures 3 and 5).

V. CONCLUSIONS AND FUTURE WORKS

The design of proportional integral (PI) and proportional
multiple integrals (PMI) are studied in this paper. This work
is an extension of the PI and PMI observers developed for
linear systems to nonlinear T-S systems with unmeasurable
premise variables. The convergence conditions of the state
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Fig. 4. State estimation error with a PI observer
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Fig. 5. State estimation error with a PMI observer

estimation error are given in the LMI formulation. The
observers are robust since they are synthesized in order to
minimize the effect of noises on the state estimation error by
using anL2 approach. The PI observer is interesting for the
estimation of constant or slowly varying unknown inputs and
it is less sensitive to noises compared to the PMI observer
[7]. In the other hand, PMI observer is a good way to obtain
a more precise estimation of states and unknown inputs. The
future works will concern, firstly, the improvement of the
PMI observer by introducing a stable frequency weighting
functions on the perturbations̃ω(t) which allows to reflect
the expected frequency content ofω̃(t), secondly, the use of
these observers in nonlinear system diagnosis.
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