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Abstract: this paper deals with the problem of the state estimation of discrete
time nonlinear systems described by Takagi-Sugeno structure with unmeasurable
premise variables. The proposed observer design method is based on the use of the
second method of Lyapunov and a quadratic function. Based on this procedure two
methods are proposed. The convergence conditions of the observer are expressed
in terms of Linear Matrix Inequalities (LMI). Finally, these two methods are
compared with regard to their domains of validity.

Keywords: Multiple model approach; nonlinear observer; unknown premise
variables; nonlinear discrete system; L2 optimization; linear matrix inequality.

1. INTRODUCTION

The nonlinear state estimation takes an increas-
ingly important place in the automatic con-
trol. Several directions of research were followed,
among them we can cite the works of Thau
(Thau, 1973) who proposed sufficient conditions
for asymptotic stability of the state estimation
error. In (Bornard and Hammouri, 1991) and
(Gauthier and Kupka, 1994), high gain observers
are proposed, which are based on the search for
a transformation of the nonlinear system toward
the canonical form, this canonical form being used
for the synthesis of the observer. However, the
disadvantage of this method is the absence of
a systematic procedure for finding the transfor-
mation functions of the system. Another more
interesting approach consists in representing the
nonlinear systems by a Takagi-Sugeno structure.

The Takagi-Sugeno structure is one of the priv-
ileged tools of representation for nonlinear sys-
tems. The particular form of these models, i.e
models interconnected by nonlinear functions,
makes it possible to exploit the tools and methods
developed in the context of the linear systems.
The nonlinear interpolation functions (weighting
functions) depend, by assumption, on measured
variables (input or output of the system). In the
context of fault detection by using banks of ob-
servers, it is thus not possible to remove one of the
inputs or outputs since they intervene directly in
the weighting functions. For that reason it is nec-
essary to work out different models to detect the
sensor faults or the actuator faults. An approach
to solve this problem is to consider models whose
weighting functions depend on the state of the
system. Moreover, the Takagi-Sugeno models with
unknown premise variables describe a wider class



of nonlinear systems compared with the models
with measurable premise variables.

In the context of the linear models, fault detec-
tion can be carried out by methods using state
observers (Maquin and Ragot, 2000) and residual
generation. In general, fault isolation methods use
banks of observers where each observer is driven
by a subset of the inputs u.The preceding tech-
nique cannot be immediately extended to the mul-
tiple model because of the couplings introduced
into the structure. Generally, the design of an ob-
server for a multiple model begins with the design
of local observers, then a weighted interpolation
is performed to obtain the estimated state. This
design allows the extension of the analysis and
synthesis tools developed for the linear systems,
to the nonlinear systems.

(Tanaka et al., 1998) proposed a study concerning
the stability and the synthesis of regulators and
observers for multiple models. In (Chadli, 2002),
(Tanaka et al., 1998) and (Guerra et al., 2006)
tools directly inspired of the study of the lin-
ear systems are adapted for the stability study
and stabilization of nonlinear systems. (Patton et

al., 1998) proposed a multiple observer based on
the use of Luenberger observers, which was then
used for the diagnosis. In (Akhenak, 2004) ob-
servers with sliding mode developed for the linear
systems, were transposed to the systems described
by multiple model. The principal interest of this
type of observers is the robustness with respect to
modeling uncertainties . Moreover, the unknown
input observers designed for linear systems, are
transposed, in the same way, into the case of non-
linear systems and application to fault diagnosis
is envisaged in (Marx et al., 2007).

However, in all these works, the authors supposed
that the weighting functions depend on measur-
able premise variables. In the field of diagnosis,
this assumption forces to design observers with
weighting functions depending on the input u(t),
for the detection of the sensors faults, and on the
output y(t), for the detection of actuator faults.
Indeed, if the decision variables are the inputs,
for example in a bank of observers, even if the
ith observer is not controlled by the input ui, this
input appears indirectly in the weighting function
and it cannot be eliminated. For this reason, it is
interesting to consider the case of weighting func-
tions depending on unknown premise variables,
like the state of the system. This assumption
makes it possible to represent a large class of
nonlinear systems. Only few works are based on
this approach, nevertheless, one can cite (Bergsten
and Palm, 2000), (Palm and Driankov, 1999),
(Bergsten et al., 2001) and (Bergsten et al., 2002),
in which a Luenberger observer is proposed, by
using Lipschitz weighting functions. The stability

conditions of the observer are formulated in the
form of linear matrix inequalities (LMI) (Boyd et

al., 1994). Unfortunately, the Lipschitz constant
appears in the LMIs to be solved and reduces the
applicability of the method if this constant has
an important value. In (Palm and Bergsten, 2000)
and (Bergsten and Palm, 2000), the observer with
sliding mode compensates the unknown terms of
the system.

In this paper, a discrete time nonlinear system
described by the Takagi-Sugeno structure is con-
sidered. The state estimation error dynamics is
written as a perturbed system. So, we propose
a first method based on the use of the second
method of Lyapunov and some assumptions on
the weighting functions. The second proposed
method is based on the use of L2 design (which
is an extension of the H∞ design), the influence
of the unknown terms on the state estimation
error is minimized. According to this objective, we
propose a new observer design for multiple model
with unknown premise variables. The observer
synthesis is carried out using the second method
of Lyapunov with a quadratic function and L2

optimization. The paper is organized as follows
: in section 3, the proposed observer is presented,
convergence conditions of the proposed observer
are established. In section 4, an other method of
state estimation, based on L2 techniques, is pro-
posed. Simulation results are presented in section
5, where a comparison between the two methods is
presented and some conclusions and perspectives
are given in section 5.

2. MULTIPLE MODEL APPROACH

The form of Takagi-Sugeno systems studied in this
paper is :

x(k + 1) =
r

∑

i=1

µi(x(k)) (Aix(k) + Biu(k)) (1)

y(k) = Cx(k) (2)

where x(t) ∈ R
n is the state vector, u(t) ∈

R
m is the input of the system, y(t) ∈ R

p is
the output of yhe system. Ai ∈ R

n×n, Bi ∈
R

n×m and C ∈ R
p×n are real known constant

matrices, and r is the number of sub-models.
The weighting functions µi depend on unknown
premise variables (state of a system), and verify:











r
∑

i=1

µi(x(k)) = 1

0 6 µi(x(k)) 6 1 ∀i ∈ {1, ..., r}
(3)

Few works can be found concerning the class of
nonlinear system with the assumption of unknown
premise variables but only for nonlinear continu-
ous time systems.



3. OBSERVER DESIGN PROCEDURE

3.1 Structure of the multiple observer

The matrices Ai are decomposed into:

Ai = A0 + Ai (4)

where A0 is defined by:

A0 =
1

r

r
∑

i=1

Ai (5)

By substituting (4) in the equation of the multiple
model (1) we obtain:

x(k + 1) = A0x(k)+

r
∑

i=1

µi(x(k))(Aix(k)+Biu(k))

(6)

y(k) = Cx(k) (7)

Based on this model, the following multiple ob-
server is proposed:

x̂(k + 1) = A0x̂(k) +
r

∑

i=1

µi(x̂(k))(Aix̂(k) + Biu(k)

+ G(y(k) − ŷ(k))) (8)

ŷ(k) = Cx̂(k) (9)

3.2 Observer Design

In this section, the following assumption is made:
Assumption 1. Suppose that the weighting func-
tions are Lipschitz and verify:

{

|µi(x)x − µi(x̂)x̂| 6 γ1i |x − x̂|
|µi(x)u − µi(x̂)u| 6 γ2i |x − x̂|

with γ2i = Miρ, where Mi is the Lipschitz con-
stant of the weighting function and ρ the upper
bound of the input u(t).
The observer error is given by:

e(k) = x(k) − x̂(k) (10)

and its dynamic is described by:

e(k + 1) = Φe(k) +

r
∑

i=1

Aiδi(k) + Bi∆i(k) (11)

where:






δi = µi(x)x − µi(x̂)x̂
∆i = (µi(x) − µi(x̂))u
Φ = A0 − GC

(12)

Theorem 1. The state estimation error between
the multiple model (1)-(2) and the multiple ob-
server (8)-(9) converges globally asymptotically
toward zero, if there exist a matrix P = PT > 0,
gain matrix K and positive scalars τ , ε1,ε2 and

ε3 such that the following conditions hold for
i = 1, . . . , r:

















Θi ΓT ΓT ΓT A
T

i P

Γ −rP 0 0 0
Γ 0 −rε1I 0 0
Γ 0 0 −rε2I 0

PAi 0 0 0 − ε3

rγ2

2i

I

















< 0 (13)

where:

Θi =−r−1P + τγ2

2iI + γ2

1i(rε1 + 1)A
T

i Ai

+ γ2

1irA
T

i PAi

Γ = PΦ (14)

and:
(rε2 + rε3)B

T
i Bi + rBT

i PBi − τI < 0 (15)

The observer gain is given by G = P−1K.

Proof. To prove the convergence of the estimation
error toward zero, let us consider the following
quadratic function of Lyapunov :

V (e(k)) = e(k)T Pe(k), P = PT > 0 (16)

The variation of V along the trajectory of (11) is
given by:

∆V = e(k + 1)T Pe(k + 1) − e(k)T Pe(k) (17)

and by using (11): (The time k is omitted for sake
of brevity)

∆V = (Φe +

r
∑

i=1

Aiδi + Bi∆i)
T P (Φe +

r
∑

i=1

Aiδi

+ Bi∆i) − eT Pe (18)

∆V = eT ΦT PΦe +

r
∑

i=1

eT ΦT PAiδi +

r
∑

i=1

eT ΦT PBi∆i

+
r

∑

i=1

δT
i A

T

i P

r
∑

j=1

Ajδj +
r

∑

i=1

δT
i A

T

i PΦe

+

r
∑

i=1

δT
i A

T

i P

r
∑

j=1

Bj∆j+

r
∑

i=1

∆T
i BT

i PΦe

+

r
∑

i=1

∆T
i BT

i P

r
∑

j=1

Ajδj +

r
∑

i=1

∆T
i BT

i P

r
∑

j=1

Bj∆j

− eT Pe (19)

Lemma 1. For any matrices X and Y with appro-
priate dimensions, the following property holds for
any positive scalar ε :

XT Y + Y T X < εXT X + ε−1Y T Y (20)

To reduce a double sum into a simple one, we
proceed as follows :

r
∑

i=1

XT
i

r
∑

j=1

Xj =

r
∑

i=1

XT
i Xi +

r
∑

i=1

XT
i

r
∑

j=1

j 6=i

Xj

(21)



Applying lemma 1 and taking ε = 1, thus we
obtain :

r
∑

i=1

XT
i

r
∑

j=1

j 6=i

Xj 6 (r − 1)

r
∑

i=1

XT
i Xi (22)

The inequality (21) becomes:

r
∑

i=1

XT
i

r
∑

j=1

Xj 6 r

r
∑

i=1

XT
i Xi (23)

by using (23), ∆V can be reduced as follows:

∆V 6 eT ΦT PΦe + ε−1

1
eT ΦT PPΦe

+ rε1

r
∑

i=1

δT
i A

T

i Aiδi + ε−1

2
eT ΦT PPΦe

+ rε2

r
∑

i=1

∆T
i BT

i Bi∆i +
r

∑

i=1

δT
i A

T

i P

r
∑

j=1

Ajδj

+ ε−1

3

r
∑

i=1

δT
i A

T

i PP

r
∑

j=1

Ajδj

+ ε3

r
∑

i=1

∆T
i BT

i

r
∑

j=1

Bj∆j

+

r
∑

i=1

∆T
i BT

i P

r
∑

j=1

Bj∆j − eT Pe (24)

∆V can be re-written as:

∆V 6 eT Ψ1e +

r
∑

i=1

δT
i Ψ2iδi +

r
∑

i=1

∆T
i Ψ3i∆i (25)

where:

Ψ1 = ΦT PΦ + ε−1

1
ΦT PPΦ + ε−1

2
ΦT PPΦ − P

(26)

Ψ2i = rε1A
T

i Ai + rA
T

i PAi + ε−1

3
rA

T

i PPAi (27)

and:

Ψ3i = r(ε1 + ε2)B
T
i Bi + rBT

i PBi (28)

Lipschitz property of δi in assumption 1 gives:

r
∑

i=1

δT
i δi 6

r
∑

i=1

γ2

1ie
T e (29)

Using (23) and (29) we obtain:

r
∑

i=1

δT
i Ψ2iδi <

r
∑

i=1

eT (γ2

1irε1A
T

i Ai

+ γ2

1irA
T

i PAi + γ2

1iε
−1

3
rA

T

i PPAi)e (30)

We have also:
r

∑

i=1

∆T
i Ψ3i∆i < (rε2 + rε3)

r
∑

i=1

(∆T
i BT

i Bi∆i)

+ r

r
∑

i=1

(∆T
i BT

i PBi∆i) (31)

Lipschitz property of ∆i in assumption 1 gives:

r
∑

i=1

∆T
i ∆i 6

r
∑

i=1

γ2

2ie
T e (32)

that can be written in the form:

−
r

∑

i=1

γ2

2ie
T e +

r
∑

i=1

∆T
i ∆i 6 0 (33)

Applying the S-procedure:

∆V < ∆V − τΓ (34)

with:

Γ = −
r

∑

i=1

γ2

2ie
T e +

r
∑

i=1

∆T
i ∆i 6 0 (35)

we obtain :

∆V <

r
∑

i=1

eT Ω1ie +
r

∑

i=1

∆T
i Ω2i∆i (36)

where:

Ω1i = r−1ΦT PΦ + r−1ε−1

1
ΦT PPΦ

+ r−1ε−1

2
ΦT PPΦ − r−1P + τγ2

2iI

+ γ2

i rε1A
T

i Ai + γ2

i rA
T

i PAi

+ γ2

i ε−1

3
rA

T

i PPAi (37)

and :

Ω2i = (rε2 + rε3)B
T
i Bi + rBT

i PBi − τI (38)

The negativity of ∆V is guaranteed if:

Ω1i < 0 (39)

Ω2i < 0 (40)

i ∈ {1, . . . , r}
We use the Schur complement on (39), and we
perform a change of variable K = PG to eliminate
the nonlinearity between P and G. Then, we
obtain the inequalities expressed in theorem 1.

4. L2 APPROACH

In this section a new method to synthesize an
observer is proposed. It is based on the L2 tech-
niques. The state estimation error (11) can be
written as a perturbed system:

e(k + 1) = Φe(k) + Hω(k) (41)

where :






















Φ = A0 − GC

H = [H1 ... Hr]

ω = [vT
1

... vT
r ]T

Hi =
[

Ai Bi

]

vi =
[

δT
i ∆T

i

]T

Theorem 2. The state estimation error between
the multiple model (1)-(2) and the multiple ob-
server (8)-(9) converges globally asymptotically
toward zero, if there exists matrices P = PT > 0
and K such that the following conditions hold :







−P + I Ψ1 Ψ2

ΨT
1

HT PH − γ̃I 0

ΨT
2

0 −P



 < 0 (42)

where:
Ψ1 = (AT

0
P − CT KT )H (43)

Ψ2 = AT
0
P − CT KT (44)

The observer gains are given by G = P−1K.

Proof. To show the convergence of the estimation
error toward zero, let us consider the following
quadratic Lyapunov function :

V (e(k)) = e(k)T Pe(k), P = PT > 0 (45)

The observer converges and the L2-gain from ω(k)
to e(k) is bounded by γ if the following holds :

∆V (e) + e(k)T e(k) − γ2ω(k)T ω(k) < 0 (46)

Then, by using (41):

∆V (e) = eT ΦT PΦe − eT Pe + eT ΦT PHω

+ ωT HT PΦe + ωT HT PHω (47)

Inequality (46) can then be written in the follow-
ing way :

eT ΦT PΦe − eT Pe + eT ΦT PHω + ωT HT PΦe

+ ωT HT PHω + eT e − γ2ωT ω < 0 (48)

That can be expressed under the following form :
[

e

ω

]T

M
[

e

ω

]

< 0 (49)

where :

M =

[

ΦT PΦ − P + I ΦT PH

HT PΦ HT PH − γ2I

]

(50)

Inequalities (50) are not linear because of the
product PG (Φ = A0−GC) and γ2. This problem
can be solved by using the changes of variables
K = PG and γ̃ = γ2. And after resolution of the
LMIs (50), the observer gains are computed by
G = P−1K and the L2 − gain from ω(t) to e(t) is
computed by γ =

√
γ̃.

5. SIMULATION RESULTS

5.1 Comparison between theorems 1 and 2

To illustrate the interest of the L2 method, a com-
parison between the two methods is performed on
the following example with variable parameters a

and b:

A1 =

[

a −0.3
0 −0.5

]

, A2 =

[

0.4 0.1
−0.2 b

]

B1 =

[

1
0.5

]

, B2 =

[

0.5
1

]

, C =
[

1 0
]

The weighting functions are










µ1(x) =
1 − tanh(x1)

2

µ2(x) = 1 − µ1(x) =
1 + tanh(x1)

2

(51)
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0.6

a

b

ρ = 0.3

Fig. 1. Comparison between the use of theorem 1
(x) and theorem 2 (+).

Figure 1 shows the set of solutions of LMIs of
theorems 1 and 2 according to different values of
the parameters a, b and ρ (ρ represents the upper
bound of the input of the system). In Figure 1
(top), we set ρ = 0.1, and the parameters a and b

of the system vary in [−0.6, 0.6]. We noticed that
the L2 method provides solutions whatever the
values of a and b, whereas the resolution of LMIs
in Theorem 1 provides solutions only for some
values of a and b. In Figure 1 (bottom), we remark
that increasing the value of ρ leads to decreasing
the solution set of the LMIs in theorem 1, while
the solution set of the LMIs in theorem 2 remains
unchanged. It can be concluded, for the proposed
example, that the L2 method is less conservative
compared to the method using the theorem 1.

5.2 State estimation with L2 approach

We consider the previous example with a = −0.6
and b = 0.1, to show the advantages of the using
proposed L2 observer. A stable observer with
L2 attenuation of the considered perturbation
terms for the above system can be designed using
Theorem 2. Conditions in Theorem 2 are satisfied
with :

P =

[

2.55 −1.76
−1.76 2.99

]

, G =

[

−0.18
−0.27

]

Given the initial conditions x(0) = [0.7 − 0.5]T ,
x̂(0) = [0 0]T , and the input signal in figure
2 (top), the simulation results (The reconstruc-
tion state errors) are illustrated in figure 3 and
the variation of the weighting functions are illus-
trated in figure 2 (bottom). The advantages of
this method compared to the first one are, on the
one hand, the elimination of the assumption of
Lipschitz on the weighting functions, which makes
it possible to apply it to a more important class
of nonlinear systems, and on the other hand, this
method does not require the knowledge of the
input bound of the system.
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2

Fig. 2. Input of the system (top) and variation of
the weighting functions (bottom)
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Fig. 3. Estimation error

6. CONCLUSION

In this paper, we have proposed a new method
to design an observer for discrete time Takagi-
Sugeno systems with unknown premise variables.
This representation is very interesting because it
can represent a large class of nonlinear systems
compared to the representation with measurable
premise variables. The estimation error is writ-
ten like a perturbed system and conditions con-
vergence of the observer are studied by using a
quadratic Lyapunov candidate function. An other
method using L2 design to attenuate the effect of
the perturbations on the state estimation error is
proposed. These conditions are expressed in LMI
terms.
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