
 

Abstract—Several systems (biomimetic, electric,

mechanical...) use means of locomotion based on the iterative

movements of the actuators. That results in periodic inputs for

the dynamic of these systems. The control of this class of

systems by  direct application of the existing methods of control

does not give periodic inputs inevitably and the consideration

of the periodic inputs more complexes the mathematical models

of these systems and makes them dependent on time. Our study

relates to a particular system which belongs  to the class of

systems mentioned above which is a Micro Aerial Vehicle with

flapping wings. We then propose a control method of this

strongly nonlinear system with periodic inputs, based on three

principal ideas: the parameterization of the inputs, their taking

into account in an implicit way in the model and the application

of  averaging theory. The averaged model thus released will be

used for the calculation of the control by using the method of

predictive control, which will be then applied to the original

model.

I. INTRODUCTION

HE  field of Micro Aerial Vehicle with flapping wings

(MAV) represent these last years an interesting field of

investigation, due to their interests in both military and civil

domains: such small and autonomous devices could be used

for inspecting difficult access structures, monitoring of

forest fires, or more generally for interventions in narrow

and hazardous environments, where it would be dangerous

to send a human agent. Concerning the military domain,

MAVs prove their interest in being able to be both fully

autonomous and dirigible by a single infantryman, with

foreseen applications such as rescuing or reconnaissance.

The MAV mainly studied up to now were based on fixed

or rotary wings. A model with flapping wings, reproducing

the flight of the insects or the hummingbird, was proposed in
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[1][5][8] in a project carried out to ONERA(Office National

d’étude et de recherche aérospatiale) and was validated

according to results obtained by the model "Robofly" at the

university of Berkeley [2]. The advantages are on one hand

a greater maneuverability, particularly at low speeds or even

for hovering, and on the other hand a more discrete

acoustical spectrum (in comparison with rotary wings).

The model suggested in [1][5][8] is strongly nonlinear

and presents periodic inputs. The problem control engineers

are confronted with currently is the control of dynamical

systems with periodic inputs i.e. to conceive control devices

which deliver periodic controls and make it possible to

stabilize the machine. In these problems, several works were

realized, for example, a technique based on the averaging

methods used in electrical engineering, and the application

of the backstepping [8] gave extremely encouraging results.

Another technique for the control of another model of the

MAV with flapping wings proposed in [2] which is based on

the  classical averaging theory [6]. Always in the class of

system with periodic inputs, several studies were carried out

on particular systems, we find then in [9][11][12] the control

of robots inspired by fish and snake. The technique used is

based on the search of an averaged model by using the

generalized averaging theory  [9][10][13][14].

In what follows, we will work out a strategy of control

for the model of the MAV with flapping wings elaborate in

[1][5][8]. This model depends on time because it appears in

the parameterized inputs. Then by application of the

classical averaging theory [6][3][7], an averaged model

independent of time is calculated. Basing on this last we are

elaborate control laws by application of the predictive

control [4]. The laws thus calculated makes it possible to

stabilize the original model.

II. GENERAL PRESENTATION OF THE MAV

In this section, we will present the model of the vertical

flight of the MAV with flapping wings [1][5][8]. It is put in

the following form:

2( , , ) ( )
s ia z z

z w

S
w F w U t V g

m

ρ
ζ ζ

=



= = + +

ɺ

ɺ
                       (1)

ρ  is the density of the air, S is the surface wing and g is the

gravity. State z represents the position of the machine

according to the vertical axis, w represents speed according

to this same axis. The mass of the machine is defined by m,

Va represents the aerodynamic speed which is equal to
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azaxa VVV +=  and which is a function of aerodynamic

speeds according to axis x and z :

Fax ywV )sin()cos( νλν ɺ+= according to (ox) and

Faz ywV )cos()sin( νλν ɺ−=  according to (oz).

The component 
sz

ζ  is related to stationary aerodynamics,

and the component
iz

ζ  is related to non stationary

aerodynamics, these two components are defined by:

31cos( )( cos( ) cos(3 ))zs Ct Ck kζ ν α α= +

      
31sin( )( sin( ) sin(3 ))Cn Ck kν α α+ +                          (2)

( )2ˆsin( ) 2 (1/ ) ( / 2) (1/ )zi a r a FV cx V cyζ ν πν π λ= + ɺɺɺ                    (3)

sz
ζ  and 

iz
ζ  are expressed according to constants:

31 10.27, 3.57, 0.1Ct Cn Ck k k= = = [5], angles : ( )tλ and ( )tν , c is

the chord of the profile. ˆ
rx is defined by: ˆ (3 / 4) ( / )r xx l c= −

where 
xl  is the length between the leading edge and the

rotation axis. Fy  is the adsciss of the aerodynamic center.

And α  is the angle of attack  which is defined by:

( )2 22arctan /(
az ax ax az

V V V Vα = − − + +                                    (4)

The angle of attack  for a wing is the angle which forms

the chord of its profile (the average line) with the direction

of displacement; it is the angle under which the wind comes

to strike the profile of the wing. The vector of control is

represented by: [ ]TU λ ν=  where ( )tλ  define variations

of the angle of beat of the wing, and ( )tν  define variations

of the rotation angle of the latter (fig.1).

III. AVERAGED MODEL

 The system that we will control is a strongly nonlinear

system with periodic inputs. The method that we will follow

is illustrated on (fig.2). Initially, we fixe the shape of the

periodic inputs that the wings must follow, then we define

the new parameters of control. After this stage, we must take

these inputs implicitly in the model, which will complexify

the model and reveals time in the model. To cross this

problem of instationnarity we used the averaging theory

which makes it possible to have an equivalent system

independent of  time which reproduces the same behavior as

the original system. After validation of the averaged model

by simulations in open loop and definition of the conditions

under which the model is validated, we will carry out the

application of a method of control which will stabilizes the

averaged model and stabilizes the original model.
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A. Parameterization of the inputs

For the calculation of the averaged model, we will take a

parameterization of the inputs in the form of periodic

signals. Studies on the flight of  insects show that the

variations of the angles of flapping of the wings can be

comparable with a triangular signal, and rotations by a

square signal [1][2]. After the choice of the form of the

periodic inputs, we will define the new parameters of control

(amplitudes, frequencies, phase). the actuators used to trail

the wings are piezoelectric, which wants to say that the

frequency of beat and rotation is fixed (according to studies,

the frequency of beat of the wings of the insects turns

around 40 Hz), therefore the actual parameters which we

will choose for control will be the amplitudes and the

dephasing of the two signals. The signal of beat is

parameterized in the form:

1

1 2

2

0

( ) ( / 2)

( )

p b

p b b

p b

t t t

t t T t t t

t T t t T

λ

λ λ

λ

 ≤ <


= − − ≤ <
 − ≤ <

                       (5)

The amplitude of this signal is given by: ( ) / 4
m p

Tλ λ=

( pλ represent the slope). For the rotation of the wings, we

will choose a square signal of amplitude mν  :

1

1 2

2

0

( )

m r

m r r

m r

t t

t t t t

t t T

ν

ν ν

ν

− ≤ <


= + ≤ <
− ≤ <

                               (6)

 (Fig.3) illustrates the two signals, their amplitudes and their

dephasing. With this parameterization, the new parameters

of control are the amplitudes mλ , mν , and the dephasing

φ which is defined by:

                      1 1

2 1

( ) / /(2 )

/ 2

b r

r r

t t T

t t T

φ π− =


= +

                                    (7)

Fig.2. Methodology of control

Fig.1. flapping and rotation angles of the wings
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Now, we replace the formulas of these signals in the

simplified model of the vertical flight (i.e. taken into account

of the inputs in an implicit way), which makes dependent on

time and more complex. The averaging theory [2][3] allows

to make the system independent on time and in a more

handy form for the calculation of the control laws.

B. Averaging theory

The essential goals of the averaging theory are to find an

approximation independent of  time (averaged) of the field

of vector f of the differential equation ( , , )x f x u t=ɺ

depending on time, and to determine which are the

properties which remain unchanged under the effect of the

averaging. The most common property is the stability, which

is important for the theoretical study of the control.

Let ( , )x f x u=ɺ be a dynamic system with periodic inputs.

The input u is necessarily dependent on time considering its

periodicity. Then, after parameterization of the periodic

shape (triangular, square, sinusoidal...) of the input u and the

definition of the new parameters of control, we will have:

),( tvgu =  , where g is periodic. Thus we reveal in an

implicit way time in the model i.e.:

( , ( , )) ( , , )x f x g v t f x v t= =ɺ . To cross the problem of

dependence on time of the model, we will apply the

averaging theory. From the original system we will have

another system independent on time which reproduces the

same behavior as the original system:

( , ( , ))x f x g v t=ɺ , where: 
0

1
( , , ) ( , , , )

T

f x v t f x v t dt
T

= ∫

And starting from the averaged model, we will calculate

the control laws by any method of control and we apply it to

the original model. In [3], a control law which stabilizes the

averaged model stabilizes also the original model at least on

a domain around of operating point.

C. Averaged model of the MAV with flapping wings

In this section we will calculate the averaged model if

0φ ≥ . This model is represented in the form:

( , , )

z w

w F w U t

 =


=

ɺ

ɺ

                                                                  (8)

Where :      2

0 0

1
( , , ) ( , , ) ( )

T T

a zs zi

S
F wU t F wU t dt V dt g

T Tm

ρ
ζ ζ= = + +∫ ∫

The overlining of variables indicates their averages over

one period. It was seen that, since the frequency of the

inputs is large, then the dynamic of the system is slow

compared to inputs dynamic, which leads us to make the

first simplification concerning the state of the system: It is

considered then, that the state of the system is fixed over one

period and equal to his average (hypothesis 1) (this

simplification makes it possible to reduce calculation of the

integral over one period, since we do not have the

mathematical expression of w(t)). For the aerodynamic

speed we have:
2 2

a ax azV V V= +                                      (9)

Where cos( ) sin( )ax FV w yν λ ν= + ɺ   and sin( ) cos( )az FV w yν λ ν= − ɺ

Over one period, ( ) ptλ λ= ±ɺ  thus : 2 2 2

a p FV w yλ= +

What brings us to a calculation much simpler integral :

2

0

( , , ) ( )

T

a zs zi

S
F w U t V dt g

Tm

ρ
ζ ζ= + +∫                     (10)

Calculation of 
0

1
T

zsdt
T

ζ∫  (component related to stationary

aerodynamics): By using trigonometric transformations we

will have:

( )
31cos( ) cos( ) cos(3 )zs Ct Ck kζ ν α α= + ( )

31sin( ) sin( ) sin(3 )Cn Ck kν α α+ +

1 1 cos( )
2

Ct Cn

zs

k k
ζ ν α

+
⇔ = −

3

1 1 cos( ) cos( 3 )
2

Ct Cn

C

k k
kν α ν α

−
+ + + −

For reason of simplification of calculations we will identify

the quantitiesν α±  and 3ν α− (hypothesis 2). After several

simulations in open loop, we noted that, for periodic inputs

(triangular and square) like defined in the beginning of the

paper (Fig.2), the quantities ν α±  and 3ν α−  are defined in

the following way  (in the case 0φ ≥ ):

1

1 2

2

0
2

2

2

b

b b

b

t t

t t t

t t T

π

π
ν α

π


− ≤ <



− = + ≤ <



− ≤ <


1

1 1

1 2

2 2

2

0v m y r

v m z r b

v m y b r

v m z r b

v m y b

c c t t

c c t t t
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c c t t t

c c t t T

ν

ν

νν α

ν

ν

− + ≤ <
+ + ≤ <

+ − ≤ <+ = 
− − ≤ <


− + ≤ <

1

1 1

1 2

2 2

2

0

3
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Fig.3. form of input signals

Fig.4 . Identification of the quantities ν α±  and 3ν α−
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Where constants , , , ,v y z a bc c c c c  are equal to : 2vc = ,

1.5705yc = ,  1.5711zc = ,  4.7179ac =   and    4.7128bc = .

These constants are identified by several simulations of the

real quantities ν α±  and 3ν α−  and their estimates. By

using these identifications we calculated the averaged model

of the component related to stationary aerodynamics:

1 1

0

1
[cos( )(1 )

2

T

Ct Cn

zs v m y

k k
dt c c

T

φ
ζ ν

π

−
= − −∫ cos( )( )]

v m z
c c

φ
ν

π
+ −

             
3
[cos( )(1 )

C v m a
k c c

φ
ν

π
+ − − cos( )( )]v m bc c

φ
ν

π
+ +        (11)

Calculation of 
0

1
T

zidt
T

ζ∫  (component related to unstationary

aerodynamics): we will suppose it that it is a signal of the

form:

1 1

2 2

0

r r

r r

A
t t t

A
t t t

ailleurs

ε ε
ε

ε ε
ε


− − ≤ < +



+ − ≤ < +





with ε  a very small parameter, and A a parameter according

to the amplitude of the triangular signal. This signal has the

same form with the signal ( )tλɺɺ . To identify A, we carried out

simulations, which make it possible to calculate the second

derivative of ( )tλ  with amplitude mλ  and the signal that we

define in the top, then by comparison, we can find that

pCA λ=  (where C is a constant). The component related to

non stationary aerodynamics is given by:

( )2ˆsin( ) 2 (1/ ) ( / 2) (1/ )zi a r a FV cx V cyζ ν πν π λ= + ɺɺɺ               (12)

The term ˆsin( )(2 (1/ ) ) 0a rV cxν πν ≈ɺ , since the derivative of ( )tν

is the sum of two impulses which we multiply by the signal

sin( ( ))tν which is square, the moments of commutation

correspond to the moments of the two impulses, which

enables us to say that this term ˆsin( )(2 (1/ ) )a rV cxν πνɺ  is

negligible. On the other hand the second term
2sin( )[( / 2) (1/ ) ]a FV cyν π λɺɺ  is not negligible since the moments

of commutations of sin( ( ))tν are different from the moments

of the impulses from ( )tλɺɺ , in conditions which dephasing is

different from 0 ( 0)φ > .

1 12

0

1
( sin( )( )

2

T

F

zi m b b

a

cy A
dt t t

T TV

π
ζ ν ε ε

ε
= − + − +∫

2 2sin( )( ))m b b

A
t tν ε ε

ε
− + − +

2

2
( sin( ))F

p m

a

cy
C

TV

π
λ ν= −        (13)

(where pA Cλ= )

Then the averaged model of the part related to non

stationary aerodynamics is given by:

2

0

21
sin( )

T

F

zi p m

a

cy
dt C

T TV

π
ζ λ ν= −∫                                     (14)

Then the averaged model can be put in the form:

2
2 2( )[( 1(cos( )(1 )
p F v m y

z w

S
w w y C c c

m

ρ φ
λ ν

π

 =



= + − −


ɺ

ɺ

        cos( ) ) 2(cos( )(1 )v m z v m ac c C c c
φ φ

ν ν
π π

+ + + − −

        
2

2
cos( ) ) sin( )]F

v m b p m

a

cy C
c c g

TV

πφ
ν λ ν

π
+ + − +

where : 
1 11 ( ) / 2Ct CnC k k= − , 

3
2 CC k=  and (4 ) /p m Tλ λ=

D. Validation of the averaged model

We will carry out simulations in open loop of both

original and averaged models with the same inputs of

control. The following figures show the results:

From simulations, we can validate the averaged model.

Therefore, we passed from a model depend on

time ( , , )x f x u t=ɺ  to a model independent of the time which

follows the original model perfectly. The only conditions to

satisfy so that the model is validated are:

0 40φ< < �  et 0mλ >

These conditions do not affect our system, considering that

the intervals of variations of the parameters , ,m mλ ν and φ

do not contain the values quoted above except the value of

0φ = .

We pose:

1z

S
a

m

ρ
= ,

2 2

8 F

z

cy SC
a

T m

π ρ
= − , mUλ λ= ,

mUν ν= , /Uφ φ π= ,

1 11
2

Ct Cnk k
C

−
= , 

3
2 CC k= , 

2

2

16
3 FyC

T
=

Then the system will become :

2
2

1( 3 )[( 1(cos( )(1 )z v y

z w

w a w C U C c U c Uλ ν φ

 =


= + − −

ɺ

ɺ

       cos( ) ) 2(cos( )(1 )v z v ac U c U C c U c Uν φ ν φ+ + + − −

       2cos( ) )] sin( )v b zc U c U a U U gν φ λ ν+ + + +

The released form enables us, now, to calculate the control

laws.

Fig.5. approximation of second derivative of triangular signal

Fig.6. Validation of the averaged model 40/ 60/ 10m mλ ν φ= = =  (degrees)
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IV. CONTROL OF AVERAGED SYSTEM

The method which we will use for the calculation of the

control laws is used already in [4] for the control of the

vehicle. the system to be controlled contains two parts  in

cascade (Fig.7), the control which we will use is based on

the minimization of a criterion [4] that we will define

starting from the error predicted in one moment (t+τ) and

controls of the system. The control device will be composed

by two controllers: one which minimizes a criterion defines

by the error of position (z-zc) and which makes it possible to

deliver a control wc which will be in its turn the instruction

for the second subsystem. The controls u will be calculated

in this case by minimizing a criterion, but this time defined

by the error speed (w-wc).

A. Calculation of the controls

1) Controller C1

We will now define the criterion J1 to be minimized:

1 ( ) ( )

( ) ( ) ( )

T T

z z z z

z c

J e t Qe t w Rw

e t z t z t

τ τ= + + +

= −

zτ  is a parameter of prediction. Minimization also relates to

the speed w which is regarded as a virtual control for the

second subsystem. Since the value ( )z ze t τ+  and w  are

scalars then the criterion will be written in the form:
2 2

1 ( )z zJ Qe t Rwτ= + +

While developing ( )ze t τ+ in infinite series, we will have:
2

( ) ( ) ( ) ( ) .......
2

z
z z z z z ze t e t e t e t

τ
τ τ+ = + + +ɺ ɺɺ

In our application we will stop at order 1, which leads us to:
2 2

1 ( ( ) ( ))z zJ Q e t e t Rwτ= + +ɺ

2 2

1 (( ) ( ))c cJ Q z z z z Rwτ= − + − +ɺ ɺ

We have z w=ɺ  according to the model :
2 2

1 (( ) ( ))c cJ Q z z w z Rwτ= − + − +ɺ

To minimize this criterion compared to w, it is derived and

calculate the value of w which cancels the derivative and

consequently minimizes the J1 criterion:

21

2 21

(2 ( ) 2 ( )) 2

(2 2 ) (2 2 ( ))

z c c

z z c z c

J
Q w z z z Rw

w

J
Q R w Q z z z

w

τ τ

τ τ τ

∂
= − + − +

∂

∂
= + − − −

∂

ɺ

ɺ

2 21 0 (2 2 ) (2 2 ( )) 0z z c z c

J
Q R w Q z z z

w
τ τ τ

∂
= ⇔ + − − − =

∂
ɺ

The solution of this equation gives us the control law
cw ,

which makes it possible to bring back state z to the reference
2 2(2 2 ( ) /(2 2 )

c z c z c z
w Q z z z Q Rτ τ τ= − − +ɺ                  (15)

The control cw  represents a reference for the controller 2,

who will calculate the control laws U to bring back the

speed of the system to follow the reference cw .

2) Controller C2

In the same way we define a criterion for the second

subsystem which describes the evolution speed, therefore

the state indicates speed w , and the controls are the

amplitudes of the signals (triangular and square) and the

dephasing between these two signals. The criterion to be

minimized is form:

2 ( ) ( )

( ) ( ) ( )

T T

w w w w

w c

J e t Pe t U BU

e t w t w t

U U U Uλ ν φ

τ τ= + + +

= −

 =  

                        (16)

wτ  is a parameter of prediction. P is a scalar, and B a

diagonal matrix of dimension 3 3× of the form:

1

2

3

0 0

0 0

0 0

B

B B

B

 
 =  
  

While developing ( )w we t τ+ in infinite series, and replacing

it in the equation (16), we will have:
2 2 2

2

2 2 2

1 2 3

( ( ) ( ) 2 ( )( ))
w w c w w c

J P e t w w e t w w

BU B U B Uλ ν φ

τ τ= + − + −

+ + +

ɺ ɺ ɺ ɺ

We have also :
2

1 3 1( )[( (cos( )(1 )z v yw a w C U C c U c Uλ ν φ= + − −ɺ

      2cos( ) ) (cos( )(1 )v z v ac U c U C c U c Uν φ ν φ+ + + − −

      2cos( ) )] sin( )v b zc U c U a U U gν φ λ ν+ + + +                    (17)

After taking into account of the conditions 0Uφ >  and

0Uλ > , and the replacement of equation  (17) in J2, we used

the Matlab constrained minimization algorithm “lsqnonlin”.

So, the control laws that we applied to the system are the

result of  the minimization of the criterion J2 under

constraints.

B. Results of simulation

In this section, we will have some results of simulation of

the averaged model of the MAV with flapping wings.

Because of physical constraints on the wings, we will

impose an interval of variation for each control [5] while

taking into account the conditions of validity of the averaged

model, therefore that wants to say that controller 2 consists

of the minimization of the J2 criterion, under the constraints

on the controls.  The control laws mλ , mν and φ , belong to

the following intervals (in degrees):

[ ]40,80mλ ∈ , [ ]80,40∈mν  et [ ]30,05∈φ

Fig.7. control of  averaged system in closed loop

( , , )w F wU t=ɺ z w=ɺ
zwU

cw

Averaged systemcontrollers

zc

WeD08.6

4034



V. CONTROL OF THE ORIGINAL MAV MODEL

Now, after having calculated the control laws of the vertical

flight by using the averaged model, we will apply them to

the original model. The control laws are calculated and

applied at  each beginning of period, they are fixe on all the

interval [T,t+T].  The results of simulation are illustrated on

the figure (10). We notice that with the same parameters of

adjustment, we had the same behaviors, for the original

model and the averaged model (even response time and

precision).

It is also notable that the controls (amplitudes and dephasing

of the two signals) (Fig.11.a) are realizable (not chattering)

from the technological point of view. The real shapes of the

inputs of control are  illustrated in (Fig.11.b).

VI. CONCLUSIONS AND PERSPECTIVES

   In this article, we applied a step of control to a Micro

Aerial Vehicle with flapping wings modeled by

Th.Rakotomamonjy [5] (we are interested in the vertical

flight of the MAV). The model being strongly nonlinear

with periodic inputs. The first stage of the strategy of control

is the parameterization of the inputs in the form of periodic

signals and definition of  new parameters of control

(amplitudes and dephasing). Afterwards, we introduced

these signals into the mathematical model of the MAV. The

introduction of these functions depending on time into the

model let appear explicitly the time variable. The second

stage being to replace the time-depending model to a model

independent of  the time which approximates the behavior of

the system, and that by applying the classical averaging

theory. The calculation of the control laws is made by

minimization of two criteria. The found results are very

interesting, and the control proved to be robust in the

presence of disturbances. Future work will relate to the

application of this strategy of control for all the cases of

flight of the MAV and the application of others  methods of

control to compare the results.
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