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Abstract—This paper is devoted to the robust fault detection
and estimation for the lateral dynamics of a motorcycle. The
later is modelled using an uncertain switched system formalism.
A switched proportional integral observer is designed in order
to minimize the effect of the disturbance and uncertainties on
residual sensitivity. It consists in the design of proportional
integral observer which minimizes the well-known H∞ norm and
ensures Input-to-State-Stability (ISS). The problem is formulated
as a linear matrix inequalities (LMI) feasibility problem in which
a cost function is minimized subject to LMI constraints. Various
estimation problems are considered including state estimation,
unknown input estimation and non-linear dynamics behaviour
estimation which is considered as a fault input. A set of simulation
studies are provided in order to establish the validity of the
approach which allows sensor less implementation of driving
assistance systems for motorcycles.

I. INTRODUCTION

Passive and active driving assistance systems have been
more addressed for four-wheel vehicles than for single track-
vehicles. The results is that several functions have become
standard in today four-wheeled vehicles. They lead to a
reduction of road accidents and fatalities. However, single
track vehicles are more and more attractive. Besides the fun
aspect, they are chosen to deal with hard traffic conditions
in urbanized areas which also suffer from parking problems.
This causes an increase of two-wheeled vehicles traffic and
this type of vehicle is facing increased accident and death
statistics. Several research projects have been launched during
the last years nationally and internationally in order to analyse
the process of two-wheeled vehicles accidents and to propose
preventive and active safety systems [1].

Driving assistance systems implemented on four-wheeled
vehicles make use of information provided by several embed-
ded sensors. In addition, observers are generally implemented
in order to estimate unmeasurable variables such as the lateral
velocity. Implementing sensors on single-track vehicles is even
more complicated due to the reduced available space. In the
literature, observer design has been addressed for different
issues. In this framework several motorcycle models have
been proposed in the literature for dynamics analysis [4].
They have been also used for observer synthesis and control
design [5],[8],[17]. When considering the estimation of the
lateral dynamics, the longitudinal speed is generally assumed
to be constant. However, this assumption is only true is steady
state cornering conditions and it leads to poor estimation
performance [7], [10], [9].
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On the theoritical part, state estimation has been addressed
for several system classes going from linear time-invariant to
non-linear ones [14]. In order to face system uncertainties,
disturbances and unknown input affecting the system, different
types of observers have been developed, among them, robust
and unknown input observers. Systems are also affected by
actuator and sensor faults. For safety reasons and in order to
maintain system functionality, several papers are concerned
with detection and diagnosis of process faults [13], [12],
including for uncertain [14] and discrete systems. Approaches
include fault detection, isolation and estimation. A residual
signal is generally computed in order to represent the incon-
sistency between the actual plant variables and the assumed
model, to extract information on possible changes caused
by faults. One challenging goal is to generate an insensitive
residual against noises and uncertainties and still sensitive to
faults [13].

This paper aims to propose an observer design procedure
which takes into account the time variation of the longitudinal
speed and estimates both the state and the extra variables
that enter the model as faults. These extra variables represent
unknown inputs or the difference between the assumed linear
behaviour and the real non-linear behaviour of the tire forces.
It is proposed to use the switching system modelling of the
motorcycle Linear Parameter Varying model. It offers the
possibility to use Multiple Lyapunov Functions (MLF) for
the design of a Proportional Integral (PI) robust observer
for the estimation of faults while minimizing the effect of
the disturbance input on the residual signal. The problem is
formulated as a convex optimization problem under Linear
Matrix Inequalities (LMI) conditions.

The outline of this paper is as follows. After the introduc-
tion, the motorcycle model is presented and some observability
criteria are discussed in Section II. The state and the fault
estimation problems are formulated therein. In Section III, the
design procedure of the H∞ robust switched PI observer is
addressed. It ends with the problem formulation as an opti-
mization problem under LMI constraints. It includes Input-to-
State-Stability criteria (ISS). Simulation studies under various
lateral dynamics solicitations are conducted in Section IV.
Section V provides some concluding remarks and extension
in future work.

Notations: The following notation is used in the paper. For
any matrix ZT is the transposed of matrix Z, the star symbol
(?) in a symmetric matrix denotes the transposed block in the
symmetric position. The notation P � (�)0 means P is a
real symmetric positive (negative) semi-definite matrix. 0 and
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I denote zero and identity matrix of appropriate dimensions.

II. MOTORCYCLE MODEL FOR FAULT
ESTIMATION

A. Lateral dynamics equations

Motorcycle dynamics are highly non-linear and more com-
plex to obtain, comparing to four-wheel vehicle dynamics.
However, decomposition into in-plane (longitudinal) and out-
plane dynamics (lateral) is still possible when we are interested
in specific dynamics or maneuvers study [3], [11], [4]. This
paper is focussed on the lateral dynamics. The state compo-
nents of the simple linear model includes: the lateral velocity
vy , the yaw rate ψ̇, the roll rate φ̇, the handlebar steering angle
δ and its derivative δ̇, the front and the rear wheel lateral tire
forces Ff and Fr respectively. The lateral forces are included
in the state vector in order to take into account of the relaxation
phenomena which is important for the dynamics representa-

tion. The state vector reads: x =
[
vy, ψ̇, φ̇, δ, δ̇, Ff , Fr

]T
. The

lateral dynamics equations are:



M(v̇y + vxψ̇) +Mfkψ̈ + (Mf j +Mrh)φ̈

+Mfeδ̈ = Ff + Fr
Mfk(v̇y + vxψ̇) + a2φ̈+ a3ψ̈ + a1δ̈ − a4vxφ̇

− ifyRf sin εvxδ̇ =
∑
Mz

(Mf j +Mrh)v̇y + b2φ̈+ a2ψ̈ + b1δ̈ + b5vxψ̇

+
ify
Rf

cos εvxδ̇ =
∑
Mx

Mfev̇y + b1φ̈+ a1ψ̈ + c1δ̈ + c3vxψ̇

− ifyRf cos εvxφ̇+Kδ̇ =
∑
Ms

(1)

where 
∑
Mz = lfFf − lrFr∑
Mx = b4 sinφ− b3 sin δ∑
Ms = −b3 sinφ− c2 sin δ − ηFf + τ

(2)

The model parameters numerical values are provided in the
appendix.

The tire forces equations are governed by the equations:
σf
vx
Ḟf + Ff = Fsf (3)

σr
vx
Ḟr + Fr = Fsr (4)

The index (f) and (r) are used to identify variables related
to the front tire and rear tire respectively. The static forces Fsf
and Fsr are governed by the pacejka non-linear model [2]. The
front and rear tire lateral forces are function of the front and
the rear sideslip angles the tire-road contact location which are
denoted αf and αr respectively and the front and rear camber
angles denoted γf = φ + δ sin ε and γr = φ respectively.
Finally σf and σr are the front and the rear tire relaxation
length respectively. In order to catch the tire saturation, the
tire forces model is split into linear and non-linear parts:

Fsf = cf1αf + cf2γf + Γf (5)
Fsr = cr1αr + cr2γr + Γr (6)

where Γf and Γr are the non-linear part of the tire forces. In
the normal zone, the lateral forces are linear and these terms
are zero. In the critical zone, these terms rise and could not
be neglected. In the sliding zone, the terms become almost
constant. The coefficients cf1, cf2, cr1 and cr2 are the lateral
and camber tire stifnesses. The lateral front and rear sideslip
angles are thus given by

αf = −vy + lf ψ̇ − ηδ̇
vx

+ δ cos ε (7)

αr = −vy − lrψ̇
vx

(8)

where, η is the mechanical trail, ε is the rake angle of steering
set, lf and lr are the distances from CG to the front and rear
tires respectively. Notice that the expressions of these angles
are normally non-linear, but the saturation of the forces is
reached for low values of these angles, which makes it possible
to adopt a linearised form.

B. State-space model

The previous lateral model could be written under the form
of a Linear Parameter Varying model where the varying pa-
rameter is the forward speed vx which appears as a parameter
in the model equations. ẋ(t) = Ā (vx)x(t) +B (vx)u(t)

+Eφ (vx)φ(t) + EΓ (vx) Γ(t)
y(t) = Cx(t) + Fd (vx) d(t) + FΓ (vx) Γ(t)

(9)

where x(t) is the state vector, u(t) = τ(t) is the control input,
φ(t) is the roll angle input, Γ(t) = [Γf (t),Γr(t)]

T is the vector
of forces non-linearities and y(t) is the measurement vector.
All the matrices are assumed to be of compatible dimensions.
The roll angle enters the model as an input. In fact including
the roll angle in the state space vector renders the model not
observable (detectable). In this case an exteroceptive sensor
measuring the roll angle is needed.

Single Axle vehicle stability is not ensured for the entire
speed range. Stabilisation by rider actions on the handlebars
and body motion is required. Nevertheless, the considered
model is stable for the speed range [10, 30] m/s.

The tires lateral stiffness coefficients cf1, cf2, cr1, cr2 are
subject to variations according to the road conditions. Their
values are unknown, but deviation from nominal values are
bounded. As these coefficients appear in the matrix Ā (vx),
this matrix is thus considered as uncertain. Its variations are
also bounded and can modelled under the form of additive
uncertainty:

Ā (vx) = A (vx) + ∆A (vx) (10)

where ∆A (vx) is the disturbance matrix which verifies
∆A (vx)

T
∆A (vx) ≤ θ I, where θ is a positive bounding

constant which is of finite value since the system is stable.
Let us now model the A matrix uncertainty as an additional

disturbance input. Denoting ξ(t) = ∆A (vx)x(t), since the
motorcycle is stable and the matrix dynamics uncertainties
bounded, ξ(t) is a bounded input. The system of equation (9)
could be rewritten as:



 ẋ(t) = A (vx)x(t) +B (vx)u(t)
+Eφ (vx)φ(t) + ξ(t) + EΓ (vx) Γ(t)
y(t) = Cx(t) + Fd (vx) d(t) + FΓ (vx) Γ(t)

(11)

C. Observability and used sensors

The observability of the system is directly linked to the
used sensors and the structure of the model. For single track
vehicles two main constraints have to be taken into account.
Firstly the available place for sensor placement is very limited.
Secondly, the sensors should be compatible with admissible
costs by the motorcycle industry. For example, the measure-
ment of the handlebars torque and the lateral velocity have to
be avoided as the first one requires a physical modification
of the motorcycle and the available technology for the second
one is incompatible with common motorcycle cost (several
thousand euros). The measurement of the roll angle requires
an exteroceptive sensor such as a video or a laser sensor. An
inertial unit gives access to the yaw and the roll velocities and
the lateral acceleration. Steering angle could be obtained from
an optical encoder mounted on the motorcycle fork.

The state-space model presented above has a state-vector
with 7 components while the driver torque and the motorcycle
roll angle are unknown or known model inputs. Two cases
have to be distinguished:
• These two inputs are measured. The system is observable

using classical proprioceptive sensors if at least two
measurements are used. Naturally, the measurement of
the lateral velocity and the lateral forces could not be
used while the couple

(
δ, δ̇
)

is not suitable. Notice
that the lateral acceleration is a potential measurement
γlat = 1

M (Ff + Fr). The state could be estimated, the
remaining problem is the estimation of the non-linear part
of the tire forces while minimizing the effect of the model
uncertainties.

• The roll angle and the rider torque are not measured. The
state estimation should be considered either in the frame-
work of the minimization of the effect of these inputs and
the other ones or in the framework of the combination of
state and unknown input estimation. Unfortunately, in this
case only the first framework is possible with a 7th order
model. One has to reduce the model in order to ensure
potential for unknown input estimation which are denoted
faults in this paper.

D. Model reduction

As explained above, the torque and the roll angle are
assumed to be unknown. From the model formulation, the
system given in equation (9) presents a total of 5 exogenous
signals. According to the requirements one may need to
estimate a given input while minimizing the effect of the
others. For example, the driver torque estimation may be
required while this estimation has to be insensitive to tires
non-linearities, roll angle and parameters variations.

Unfortunately, with the previous state-space model, it is not
possible to estimate τ(t), φ(t) and f(t) using the integral

action, as the augmented system is not observable. In order
to overcome this problem, the tire relaxation lengths σf and
σr are set to zero. This allows to reduce the state vector to

x =
[
vy, ψ̇, φ̇, δ, δ̇

]T
.

E. From LPV to switched model

The longitudinal speed appears in the model as a mea-
sured parameter varying. Generally, a polytopic approach
with extremal models corresponding to the minimum and the
maximum values of the speed. Takagi-Sugeno models are also
used [6], allowing to obtain a continuous transition model from
submodels thanks to the premise variables. However, these
approaches are known to be conservative due to the large speed
variation domain. Instead, in the following, a switched model
approach is chosen. In this case, several models are defined
for different speed values and the model switches form one
subsystem to another according to the speed variations. The
model equation (9) is rewritten under the form:

ẋ(t) = Aσx(t) +Bσu(t)

+
[
Ed,σ I

] [ d(t)
ξ(t)

]
+ Ef,σf(t)

y(t) = Cx(t) + Fd,σd(t) + Ff,σf(t)

(12)

where σ(t) is the switching parameter which is assumed to be
known. This parameter is obtained as the index of the forward
speed grid regions obtained by the discretization the speed
range [vmin, vmax]. Given vmin = v1 ≤ v2 ≤ ... ≤ vN = vmax,
any given speed v(t) ∈ [vσ, vσ+1] and σ ∈ {1, 2, ..., N − 1}.

At this stage, the model (12) could be considered as general.
In fact a classical observation problem addresses the estimation
of the state vector x(t) and the fault vector f(t) assuming
that the input vector u(t) and the output y(t) are available.
The estimation has to be robust to the disturbance input d(t)
which is assumed to be unknown. The fault vector could
include actuators faults, sensor faults or any other signals that
should be estimated. In addition one can estimate only one or
more variables by putting those to be estimated in f(t) and
the others against which the estimation has to be insensitive
in d(t). Two specific situations are provided here for better
clarification.

• The rider torque is measured u(t) = τ(t), one wants
to estimate f(t) = φ(t) while minimizing the effect of

d̃(t) =

[
d(t)
ξ(t)

]
with d(t) =

[
Γf (t)
Γr(t)

]
.

• The rider torque is not measured u(t) = 0, one wants to
estimate it f(t) = τ(t) while minimizing the effect of

d̃(t) =

[
d(t)
ξ(t)

]
with d(t) =

 φ(t)
Γf (t)
Γr(t)

.

Finally, it is not yet decided which signal is included in
vector d(t) and which affected to f(t). One only has to
consider that the components of these vectors could be τ , φ,
Γf and Γr, and nd + nf = 4.



III. SWITCHED PI OBSERVER

PI observers have been widely used in the litterature [15].
Assuming that the signals f(t) to be estimated are constant,
one can use a Proportional Integral Observer (PIO) in order
to obtain a relevant estimate. It is wellknown that even if
these inputs are not constant, the observer still works well
by adjusting the observer bandwith [16]. Another possibility
is to use Multiple Integral Proportional Observers which are
able to estimate varying unknown inputs [15].

In the following, we consider the design on a switched
robust PI observer for system (12) given by the equations [16].

˙̂x(t) = Aσx̂(t) +Bσu(t) + LP,σ (y(t)− ŷ(t)) + Ef,σ f̂(t)
˙̂
f(t) = LI,σ (y(t)− ŷ(t))
ŷ(t) = Cx̂(t)

(13)
where x̂ ∈ Rnx is the state estimate, ŷ ∈ Rny is the measure-
ment estimate, f̂ ∈ Rnf is the fault vector input estimate. The
observer proportional matrix gain is LP,σ ∈ Rnx×ny and the
integral matrix gain is LI,σ ∈ Rnf×ny . The Observer gain is
LTσ =

[
LTP,σ, L

T
I,σ

]T
.

The PI observer will be designed with the aim to reduce to
effect of the disturbance input d(t) on the residual which is
defined for each mode as:

rσ(t) = y(t)− ŷ(t) (14)

This residue is defined for each sub-system since the esti-
mated output is obtained from different observers.

A. Design procedure

The observer design needs the definition of the state estima-
tion error ex = x−x̂ and the fault estimation error ef = f−f̂ .
These two errors will be also considered together into the

augmented error vector x̃ =
[
eTx , e

T
f

]T
.

The error vector dynamics and the residual are given by:
˙̃x =

(
Ãσ − LσC̃σ

)
x̃+

(
Ẽd,σ − LσFd,σ

)
d

−LσFf,σf + Ĩξ

rσ = C̃σx̃+ Fd,σd+ Ff,σf

(15)

where d ∈ Rnd and the matrices are defined by

Ãσ =

[
Aσ Ef,σ
0 0

]
, B̃σ =

[
Bσ
0

]
, Ẽd,σ =

[
Ed,σ

0

]
C̃σ =

[
C 0

]
, Ĩ =

[
I
0

]
, Lσ =

[
LP,σ
LI,σ

]
The objective of the H∞ switched fault detection PI ob-

server is to ensure that the sensitivity transfer function from
the disturbance input [dT ξT ]T to the residual rσ verifies∣∣∣∣Trσ d̃∣∣∣∣ < γσ (16)

where d̃ =
[
dT ξT

]T
and γσ are positive numbers. One

has to notice that γσ is seek for each switched subsystem.
The achieved values may be different for each mode. The
minimization is performed in the case of zero fault.

Let A∗σ = Ãσ − LσC̃σ , E∗d,σ = Ẽd,σ − LσFd,σ , E∗f,σ =
−LσFf,σ .

In the following, the input ξ is only assumed to be norm
bounded, the equation (15) is used in the development of
the sufficient LMI conditions for robust PI observer fault
detection.

B. H∞ robust PI fault estimation observer

According to the matrices defined above, the error dynamics
could be written as

˙̃x = A∗σx̃+ E∗d,σd+ E∗f,σf + Ĩξ (17)

Considering the Multiple Lyapunov Function

Vσ = x̃TPσx̃ (18)

The Lyapunov function has to verify the inequality

V̇σ + rTσ rσ − γ2
σd̃

T d̃ < 0 (19)

In order that equation (16) is verified. This condition is
transformed into a Linear Matrix Inequality involved in an
optimization problem.

In fact, if there exist symmetric definite matrices Pσ , Uσ ,
scalars βσ , scalars ᾱσ , and positive scalars γσ , solving the
optimization problem for each mode (σ = 1, 2, ..., N) of the
switched system [16]

min
Pσ,Uσ,γ̄σ,ᾱσ

βσᾱσ + (1− βσ) γ̄σ

under  Ωd,σ Λd,σ Pσ Ĩ
∗ FTd,σFd,σ − γ̄σI 0

∗ 0 −γ̄σI

 � 0 (20)

 Πd,σ Φd,σ Pσ Ĩ
∗ −γ̄σI 0
∗ 0 −γ̄σI

 � 0 (21)

(
−ᾱσI Pσ
Pσ −I

)
� 0 (22)

Pσ � I (23)

where

Πd,σ = ÃTσPσ + C̃Tσ Uσ + PσÃσ + UσC̃σ + I

Φd,σ = PσẼd,σ + UσFd,σ

Ωd,σ = ÃTσPσ + C̃Tσ Uσ + PσÃσ + UσC̃σ + C̃Tσ C̃σ

Λd,σ = PσẼd,σ + UσFd,σ + C̃σFd,σ

then it is ensured that

‖x̃‖2 ≤

√
λmax (Pσ)

λmin (Pσ)

(
e−

t
2λmax(Pσ) ‖x̃(0)‖2 + γσ

∥∥∥d̃∥∥∥
∞

)
γσ =

√
γ̄σ and βσ ∈ [0, 1] is a design parameter that balances

between the two objectives of minimizing ᾱσ and γ̄σ . The LMI
condition (20) ensures the H∞ attenuation, while the LMI



conditions (21) to (23) ensure the ISS property of the designed
observers. The LMI condition (23) ensures that λmax (Pσ) ≤
ασ , α2

σ = ᾱσ since λmin (Pσ) ≥ 1.
The robust PI fault detection observer is with gain filter

Lσ = −P−1
σ Uσ and

∥∥∥rσ|f=0

∥∥∥
2
< γσ

∥∥[dT ξT ]T
∥∥

2
. The

solution of the LMI problem is conducted under available
software.

The existence of the proposed PI observer is subject to
the pair

(
Ãσ, C̃σ

)
is observable or at least detectable. In

addition, in order to be able to estimate the fault vector f(t),
the following rank condition should hold for all s ∈ C such
that <s > 0 and σ = 1, 2, ..., N :

rank

 sI −Aσ −Ef,σ
0 sI
C 0

 = nx + rank (Ef,σ) (24)

Since the speed variations are not very fast, there is an
average dwell time of each mode which ensures stability [19].
Another approach is to add pole location constraint [16]. Due
to space limitation, the study has not been carried out.

IV. SIMULATION STUDIES
The observability is ensured if at least two measurements

are used. However, when aiming to estimate both the steering
torque and the roll angle, the measurement of the steering
angle and the yaw rate are required. In the following, it is

assumed that the measurement vector is y =
[
δ, ψ̇, φ̇

]T
.

The speed range [10, 30] m/s is discretised by steps of 5
m/s. An observer gain is computed for each subsystem. The
observers are then combined according to speed variations.

The chosen scenario for simulation is a double lane change
manoeuvre a typical situation when the rider avoids an obstacle
located on the lane. The action is a positive torque on the
handlebars followed by a negative torque. This manoeuvre
excites the motorcycle dynamics, the corresponding torque
and longitudinal speed variations are shown in Figure 1. The
longitudinal speed profile starts at 12 [m/s]. It increases until
20 [m/s], stays constant during 4 sec and then decreases to 10
[m/s]. Doing that and according to speed discretisation, three
subsystems in the speed switched system are involved.

Fig. 1. Rider torque and speed profile during double lane change maneuver

In all the simulation, the initial conditions of the observers
are chosen different from that of the system in order to shown

the behaviour before convergence. First of all, observers are
developed with the motorcycle roll angle and the rider torque
considered faults to be estimated, parameters variations enter
as unknown input.

Fig. 2. Rider torque and roll angle estimation. Estimate in dash-dot lines.

The results are shown in Figure 2. One can see that
the estimation of both variables works well. The estimated
variables follow the variation of the roll and the handlebars
torque. The convergence time of the observer is sufficiently
short. The noisy case is now treated. Figure 3 shows the three
noisy measured variables. The estimated tire forces are shown
in Figure 4. According to the maximum values, the saturation
zone is reached and the estimation still works.

Fig. 3. Noisy measurements
[
δ, ψ̇, φ̇

]T

Fig. 4. Estimated lateral forces F̂f and F̂r

The estimated roll angle and rider torque in this conditions
are shown in Figure 5. The obtain profiles do not exhibit any



Fig. 5. Rider torque and roll angle estimation in noisy conditions. Estimates
in dash-dot lines.

Fig. 6. Residual signal

bias and the delay is small. The observer reacts well to the
variations. Figure 6 shows the norm of the residue rσ(t). The
obtained values are very small.

V. CONCLUSIONS

In this paper a robust fault estimation framework for non-
linear switched systems has been presented. It uses a switched
H∞ PI observer structure. The observers allow the robust
estimation of the fault while minimizing the effect of the un-
known disturbance input on the residue. The observer gains are
obtained from the solutions of an optimization problem under
LMI conditions which include ISS property. This problem is
solved using efficient available LMI solver.

This framework is applied to the estimation of unknown
input and non-linear behaviour in motorcycle’s lateral dy-
namics. The motorcycle is subject to disturbance inputs ans
the tire forces may experience saturations that render it less
controllable. The observers provide a robust estimation of the
gap between the normal linear behaviour of the forces and
the experienced non-linear behaviour. Prior to the observer
synthesis an observability analysis is conducted together with
the sensors requirements.

A motorcycle obstacle avoidance manoeuvre is simulated
in order to evaluate the capabilities of the proposed observers.
Future work will concern first further analysis of the design
procedure including the simultaneous use of a bank of dedi-
cated observers. The development and the implementation of
a system with provides assistance to the rider will concern the

second aspect of future research. It will use visual and haptic
feedback.

APPENDIX
The motorcycle model parameters are as follows:
• Mass: Front body (Mf = 30.26), rear body

(Mr = 217.45kg), motorcycle (M = Mf +Mr).
• Geometrical parameters lf = 0.935m, lr = 0.480m, h =

0.615m, ε = 0.4712rad, .
• Stiffness cf1 = 11.174kN/rad, cf2 = 0.9386kN/rad,
cr1 = 15.8312kN/rad, cr2 = 1.3256KN/rad,
η = 6.780N.m.s/rad.

• Rf = 0.3048m, ify = 1.051kg.m2.
Other parameters are available in [18].
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