
Switched interval observer for uncertain
continuous-time systems

S. Ifqir ∗ N. Ait Oufroukh ∗ D. Ichalal ∗ S. Mammar ∗

∗ Laboratory of Computing, Integrative Biology and Complex Systems,
University of Evry Val dEssonne, Evry 91000, France, (e-mail:{

sara.ifqir, naima.aitoufroukh, dalil.ichalal, said.mammar}
@ibisc.univ-evry.fr ).

Abstract: This paper addresses the problem of robust state estimation of switched uncertain
systems subject to unknown disturbances. The proposed approach is based on switched interval
observers which provide guaranteed lower and upper bounds allowing to evaluate the set of
admissible values of the real state vector. The stability and cooperativity conditions of the
proposed switched observer are expressed in terms of linear matrix inequalities (LMIs), witch
have been established using a common quadratic Lyapunov function (CQLF). Estimation
accuracy and robustness with respect to unknown disturbances is analyzed using H∞ objective
with pole placement constraints. The proposed approach is illustrated by a numerical example.
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1. INTRODUCTION

In recent years, switched systems gained a great atten-
tion due to their wide applications in practical systems.
Switched linear systems (Liberzon (2012)) are an impor-
tant class of hybrid dynamic systems (Goebel et al. (2009))
consisting of a several subsystems and a switching discrete
law specifying at each time the active subsystem dynamics.
Contrary to the stability problem of switched systems
that has been extensively studied in the literature (see
for example Liberzon and Morse (1999), Agrachev and
Liberzon (2001), Vu et al. (2007), Agrachev and Liberzon
(1999)), the estimation problem for this class of systems
has attracted less attention and very few works are avail-
able in this area, (see Li et al. (2003), Alessandri and
Coletta (2001)).

The state estimation problem of switched systems was
originally studied in Ackerson and Fu (1970), afterward,
Alessandri and Coletta proposed a optimally switching Lu-
enberger observer for continuous-time deterministic linear
switched systems with a known discrete law evolution (see
Alessandri and Coletta (2001)). In Balluchi et al. (2002),
this approach has been extended to the case of unknown
discrete modes and a method of discrete and continuous
state estimation for linear systems has been presented.

Notice that all the mentioned approaches are based on a
perfect knowledge of the model structure and parameters.
However, the uncertainties can generate a large bias in
the estimation of unmeasured states. Consequently, we will
focus here on the problem of robust estimation of switched
uncertain systems taking into account the presence of
unknown disturbances with the potential to evaluate the
set of admissible trajectory of systems. Using the so-called
interval observers, we will be able to provide guaranteed
bounds of the real trajectories.

Interval observers are appeared in last decade as an alter-
native approach for robust estimation (Rapaport and Har-
mand (2002)). They were originally developed in Gouzé
et al. (2000) for the estimation of biological systems sub-
ject to unknown uncertainties. These observers require, in
addition to stability, the cooperativity and positivity of
observation error (Smith (2008)). There are various ap-
proaches to design interval observers for continuous times
systems satisfying properties of monotone differential sys-
tems. See for instance, Rami et al. (2008), Bolajraf et al.
(2010) and Rami et al. (2013), where interval observers
for linear uncertain systems are presented. The necessary
and sufficient conditions have been formulated in terms of
linear programming. In Räıssi et al. (2010), Efimov et al.
(2012) and Efimov et al. (2013), the interval observers for
LPV and nonlinear systems based on Lyapunov theory and
linear matrix inequalities (LMIs) have been designed.

The objective of this technical note is to propose some new
results on interval observer for switched uncertain linear
systems with guaranteed of cooperativity and uniform
asymptotic stability of the switched observers.

The paper is organized as follows. In Section 2, we present
the preliminaries and the mathematical background nec-
essary to state the main result of the paper. The necessary
and sufficient conditions for the existing of switched inter-
val observer are presented in section 3. Section 4 contains
an illustrative example. Finally, the section 5 concludes
the paper.

Notations: Throughout the paper, we will adopt the con-
vention of denoting a left and right endpoints of an interval
[x] respectively by x− and x+ such as [x] = [x−, x+]. For
any two vectors x1, x2 or matrices M1, M2 the inequalities
x1 ≤ x2, x1 ≥ x2, M1 ≤ M2 and M1 ≥ M2 must be
interpreted element-wise. mîĵ denotes the element on the



îth line and ĵth column of the matrix M . M > 0 (resp.
M < 0) denotes a matrix with positive (resp. negative)
components and M � 0 (resp. M ≺ 0) means that the
matrix is positive (resp. negative) semidefinite. MT means
the transpose of matrix M. R (R+) is the set of all real
(positive) numbers. Rn (Rn+) is n-dimensional real (posi-
tive) vector space. We denote by In an identity matrix of
dimension n× n.

2. BACKGROUND AND PRELIMINARIES

In this paper, we will be interested by robust estimation
of the linear switched systems of the form:{

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + ω(t)
y(t) = Cx(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, represent
respectively the state, the control input and the output
vector. σ : R+ → {1, 2, ..., N} is a piecewise constant
function representing the switching signal, which are as-
sumed to be available in real time. The matrices Aσ(t) ∈
{A1, A2, ..., AN} and Bσ(t) ∈ {B1, B2, ..., BN} are assumed
to be known. Without loss of generality, the output matrix
C is considered constant ∀σ(t). The disturbance input ω(t)
is a Lipschitz continuous function, bounded by two known
functions such that ∀t ≥ 0, ω−(t) ≤ ω(t) ≤ ω+(t).

The objective of this work is to design a switching interval
observer for the system (1). The designed estimator has to
ensure a robustness with respect to unknown perturbation
ω(t). The following lemmas and definitions will be used
later to establish the main result.

Interval observers and Metzler matrices

Definition 1. (Rami et al. (2008)) An interval observer for
(1) is a pair of estimators providing a lower and upper
bounds (x− and x+) of the real state x(t) such that
x−(t) ≤ x(t) ≤ x+(t), ∀t ≥ t0.

Definition 2. A real matrix A. is called a Metzler matrix
if all its elements outside the main diagonal are positive:
aîĵ ≥ 0, ∀î 6= ĵ.

Lemma 1. (Rami et al. (2008)) A matrix Ai is a Metzler
if and only if there exist β ∈ R+ such that Ai + βIn � 0.

Cooperative and Positive switched systems

Definition 3. The continuous-time switched system (1) is
said to be cooperative if the state matrix Ai is Metzler
∀i ∈ {1, ..., N} and ∀t ≥ t0.

Remark 1. Definition 3 is also equivalent to saying that the
system (1) is monotone. This means that given any two
initial conditions xA(t0) and xB(t0) such that xA(t0) ≤
xB(t0), the corresponding solutions xA(t) and xB(t) satisfy
xA(t) ≤ xB(t), ∀t ≥ t0.

Definition 4. The switched system (1) is said to be a
positive switched system (Blanchini et al. (2015)) if Ai
is a n×n Metzler matrix, Bi ≥ 0, ∀i ∈ {1, ..., N}, u(t) ≥ 0
and ω(t) ≥ 0 and ∀t ≥ t0.

This ensures that ∀x0 ∈ Rn+, and for every choice of σ, the
state evolution x(t) = x(t;x0, σ) belongs to Rn+ for every
t ≥ t0.

Using these properties (Cooperativity and positivity), the
interval switched observers will keep the partial order
between the lower and upper trajectories.

Uniform asymptotic stability of switched positive systems

In this paper, we address the uniform asymptotic stability.
This issue is usually used when there is no restriction on
the switching signals and requires that all the subsystems
are asymptotically stable.
Note that the subsystems stability assumption is not suf-
ficient to guaranteed the stability of the switched system
under arbitrary switching. Therefore, it has been shown
that if there exists a common quadratic Lyapunov func-
tion (CQLF) for all the subsystems, then the stability of
the switched system is insured under arbitrary switching
(Shorten and Narendra (1998)). The word ”Uniform”
refers to uniformity with respect to switching signals.
Formally, checking for the existence of a CQLF can be
expressed in terms of linear matrix inequalities (LMIs) as
follows:

Lemma 2. If there exists a common positive definite matrix
P = PT � 0 in Rn×n satisfying the N Lyapunov
inequalities:

ATi P + PAi ≺ 0 i ∈ {1, ..., N} (2)

then V (x) = xTPx defines a common quadratic Lyapunov
function for the systems of the form (1).

Pole assignment problem in LMI region

Consider the LMI region given by the stability margin
αi (Figure 1). The matrix Ai is said Di-Stable when its
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Fig. 1. Pole placement in region LMI for the subsystem i.

spectrum λ(Ai) belongs to region Di:
Di = {z ∈ C / Re (z) < −αi}

This is equivalent to the following Lyapunov inequalities:

ATi P + PAi + αiP ≺ 0 i ∈ {1, ..., N} (3)

with αi > 0 the desired stability margin.



3. SWITCHING INTERVAL OBSERVER DESIGN
FOR SWITCHED LINEAR SYSTEMS

To design a switching stable interval observer for the
system (1), the choice of the observer gains Li such that
Ai − LiC is only Hurwitz is not sufficient. Therefore,
additional assumptions are used to prove the positivity
of observation errors (Smith (2008)).
In this section, we present a construction method of
switching interval observers for the system (1). We intro-
duce some assumptions required for our design.

Assumption 1. The pair (Ai, C) is detectable ∀i ∈
{1, ..., N}.
Assumption 2. There exist ω−(t), ω+(t) such that:

ω−(t) ≤ ω(t) ≤ ω+(t) (4)

Under assumptions 1 and 2, the following proposed system: ẋ+(t) = (Aσ(t) − Lσ(t)C)x+ +Bσ(t)u+ Lσ(t)y + ω+(t)
ẋ−(t) = (Aσ(t) − Lσ(t)C)x− +Bσ(t)u+ Lσ(t)y + ω−(t)
x−(t0) ≤ x(t) ≤ x+(t0)

(5)
is a switching interval observer for the system (1) if:

x−(t) ≤ x(t) ≤ x+(t), ∀t ≥ t0 (6)

3.1 Positivity of the interval errors

The inequality (6) is equivalent to showing that the upper
and lower errors e−(t) = x(t)−x−(t) and e+(t) = x+(t)−
x(t) are positive for all initial conditions e−(t0) = x(t0)−
x−(t0) ≥ 0 and e+(t0) = x+(t0) − x(t0) ≥ 0 and it
suffices to use the lemma 1 to show the nonnegativity of
the observation errors. Their dynamics are given by:

{
ė+(t) = (Aσ(t) − Lσ(t)C)e+(t) + δ+(t)
ė−(t) = (Aσ(t) − Lσ(t)C)e−(t) + δ−(t)

(7)

with {
δ+(t) = ω+(t)− ω(t)
δ−(t) = ω(t)− ω−(t)

(8)

The input δ+(t) and δ−(t) are nonnegative for all t ≥ t0
due to assumption 2 then according to definition 4, the
estimation errors are positive for all e−(t0) ≥ 0 and
e+(t0) ≥ 0 if and only if the matrix Ai − LiC is Metzler
∀i. Positivity of the interval errors is necessary to satisfy
the interval property, i.e, the state trajectories stay within
the estimated bounds.

3.2 Convergence of interval error

Note that the stability of the proposed switching interval
observer results from the stability of total interval error
e(t) = x+(t) − x−(t) witch represents the difference
between the upper and lower state estimates.
The dynamic of the total error e(t) is given as follows:

ė(t) = (Aσ(t) − Lσ(t)C)e(t) + δ(t) (9)

where

δ(t) = δ+(t)− δ−(t)

The dynamics of total error behaves like a switched sys-
tem, therefore a common quadratic Lyapunov function is
searched to ensure stability.

Thus, the main result is given by the following theorem

Theorem 1. If there exist a positive definite diagonal
matrix P , real positive scalar γ and matrices Ki satisfying:

min
P,Ki

γ

[
ATi P − CTi KT

i + PAi −KiCi + αiP P
P −γIn

]
≺ 0

PAi −KiCi + βP ≥ 0

(10)

with a given positive constant β and Li = P−1Ki,
then the switched interval observer (5) involves a positive
estimation error such that

(1) The total estimation error (9) with δ(t) = 0 is uniform
asymptotically stable.

(2) The estimation error e(t) is uniformly bounded and
satisfies

sup
‖e(t)‖2
‖δ(t)‖2

≤ γ (11)

for all bounded δ(t) 6= 0, where γ =
√
γ represents

the disturbance attenuation level.

Proof. In order to improve the performance of the switch-
ing interval observer, we define a variable αi such that all
the eigenvalues of (Ai − LiC) lie inside a specific LMI
region Di, ∀i ∈ {1, ..., N} (See figure 1). Then, for a
common Lyapunov function V (t) = e(t)TPe(t), the time
derivative should satisfy

V̇ (t) < −αiV (t) (12)

Along the trajectory of each mode i of the observation
error equation given in (9), we have

V̇ = eT ((Ai − LiC)TP + P (Ai − LiC))e+ δTPe+ eTPδ
(13)

it follows from (12) and (13) that

eT ((Ai − LiC)TP + P (Ai − LiC))e+ δTPe+ eTPδ
≺ −αieTPe

(14)
then, the total error e(t) given in (9) is Di-Stable if the
following inequality hold for each mode i

eT ((Ai−LiC)TP+P (Ai−LiC)+αiP )e+δTPe+eTPδ ≺ 0
(15)

In the other hand, we want to minimize the influences of
the disturbances δ(t)→ e(t) according to the H∞ criteria,
with index γ such that:

‖e‖2 < γ‖δ‖2 (16)

equivalent to find γ ∈ R+ satisfying

eT e− γ2δT δ ≺ 0 (17)

Then according to the constraints formulated in (15-17)
and by using the S-procedure (Chen et al. (2000)), we
obtain the equivalent inequalities:



eT (ATi − CTLTi + PAi − PLiC + αiP )e+ δTPe+ eTPδ
−γ2δT δ ≺ 0

(18)
for each i ∈ {1, . . . , N}. Let Ki = PLi and γ = γ2, then
we get the following linear matrix inequalities:

min
P,Ki

γ

[
ATi P − CTi KT

i + PAi −KiCi + αiP P
P −γ In

]
≺ 0

(19)

The previously constraints ensure that (Ai − LiC) is
Hurwitz ∀i. In a second step, we need to ensure the Metzler
property. Referring to lemma 1, (Ai − LiC) is Metzler if:

(Ai − LiC) + βIn ≥ 0 (20)

Note that the quantity βIn is added in the Metzler
constraint since only the off-diagonal elements of a matrix
must be nonnegative to satisfy the Metzler property.
Furthermore for a given positive definite diagonal matrix
P , the matrix P (Ai−LiC) is also Metzler ∀i (Chebotarev
et al. (2015)). Multiplying by P in the left side of (20) and
developing, we obtain:

PAi −KiCi + βP ≥ 0 (21)

which proves the positivity of the interval error e for a
diagonal positive definite matrix P thus we conclude that
the observation error e is always positive-stable and the
proof is complete. �

Remark 3. Note that the previous inequality is not linear
for the parameters β and P because of the presence of the
product βP . However, by fixing the scalar β, the Bilinear
Matrix Inequality (BMI) described by equations (21) is
transformed into Linear Matrix Inequality form.

4. ILLUSTRATIVE EXAMPLE

In this section, we apply the switched interval observer
previously described to estimate the state vector of a two-
degree-of-freedom switched system with two modes given
as follows

Subsystem 1 (σ(t) = 1)

S1 :


ẋ(t) =

[
−1 0.1
−1 −2

]
x(t) +

[
0
1

]
u(t) + ω(t)

y(t) = [1 0]x(t)

(22)

Subsystem 2 (σ(t) = 2)

S2 :


ẋ(t) =

[
−1 0.5
−1 −2

]
x(t) +

[
0
1

]
u(t) + ω(t)

y(t) = [1 0]x(t)

(23)

with u(t) = sin(t) and ω(t) an uniformly distributed noise
in [−1, 1]. The switching law is presented in figure 2.
Solving the linear matrix inequalities in (10) give the
solutions

L1 =

[
12.3391
−6.7799

]
L2 =

[
14.9755
−5.6590

]

and

P =

[
0.0084 0

0 0.0012

]
γ = 0.0316. The numerical simulation was carried out
by using Matlab YALMIP toolbox. The numerical results

corresponding to an initial conditions x+0 = [0.2 0.2]
T

,

x−0 = [−0.2 −0.2]
T

, β = 1, a stability margins α1 = α2 =
2, ω+(t) = ω(t) + 0.2 and ω−(t) = ω(t)− 0.2.

The switched interval observer for x1 and x2 is shown in
figures 3 and 4. The simulation of proposed observer proves
the effectiveness of such observer to estimate guaranteed
bounds of state vector. The evolution of the interval errors
e+1 (t) = x+1 (t) − x−1 (t) and e−2 (t) = x+2 (t) − x−2 (t) are
depicted in figure 5. In fact, the interval errors dynamics
converge in a finite time towards an invariant set defined
by the disturbance bounds ω+(t) ans ω−(t) and calculated
attenuation gain γ. Note that, if ω(t) = 0, then the
proposed observer will converge asymptotically to zero.

Fig. 2. Switching signal.

Fig. 3. Switching interval observer of the state x1.

5. CONCLUSION AND FUTURE WORKS

In this paper, we have addressed the design problem of
a switched interval observer for a class of switched un-
certain continuous-time linear systems subject to exoge-
nous disturbances. The necessary and sufficient conditions
ensuring the positivity and stability of the interval error
dynamic have been found and an LMI formulation has



Fig. 4. Switching interval observer of the state x2.

Fig. 5. Interval errors e1(t) and e2(t).

been presented to compute the switched optimal observer
gains. The simulation results obtained for a simple two-
degree-of-freedom system subject to additive unknown
and bounded disturbances, show both that, the proposed
estimators are stable for arbitrary switching and that they
ensure guaranteed bounds with a higher performance.

Future works will concern the extension of the proposed
interval observer for the linear and nonlinear switched sys-
tems with uncertain parameters and measurement noises.
Reduction of the conservatism of the proposed LMIs us-
ing a multiple quadratic Lyapunov function will be also
considered.
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A. (2015). Interval observers for continuous-time lpv
systems with l1/l2 performance. Automatica, 58, 82–89.

Chen, B.S., Tseng, C.S., and Uang, H.J. (2000). Mixed h
2/h fuzzy output feedback control design for nonlinear
dynamic systems: an lmi approach. IEEE Transactions
on Fuzzy Systems, 8(3), 249–265.
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