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Abstract: This paper presents a new method for guaranteed and robust estimation of sideslip
angle and lateral tire forces with consideration of cornering stiffness variations resulting from
changes in tire/road and driving conditions. An interval LPV observer with both measurable
and unmeasurable time-varying parameters is proposed. The longitudinal velocity is treated as
the online measured time-varying parameter and the cornering stiffness at front and rear tires
are assumed to be unknown but bounded with a priori known bounds. The obtained results are
no more punctual values but a set of acceptable values. The simulation is based on experimental
data in order to prove the effectiveness of the proposed observers.
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1. INTRODUCTION

Accurate knowledge of state variables such as sideslip
angle and tire forces is essential to improve the safety,
handling, performance and comfort of vehicles. However,
the complexity of the technical implementation and cost
prohibitive for the installation of sensors to measure these
important data make their integration into standard ve-
hicles an unfeasible solution. Therefore, these variables
must be estimated using observers and measurements from
standard sensors such as gyro, accelerometer, etc.

In the literature, several studies have addressed the de-
sign of classic observers to estimate the vehicle lateral
dynamic states using different approaches. For example,
Luenberger observer, Kalman Filter (Venhovens and Naab
(1999)), Extended Kalman filter (Satria and Best (2005)),
Unknown input proportional-integral observer (Mammar
et al. (2006)) and sliding mode observer (Stéphant et al.
(2007)). Most of these studies have been based on the
assumption that the cornering stiffness parameters are
constant. This assumption is verified only when the vehicle
is operating in the linear region of lateral forces (Fig. 2)
and the road conditions are nominal. However, when the
road friction changes, the nonlinear region is generally
reached. Consequently, the vehicle approaches to its op-
erational limit conditions and its response to the driver’s
inputs becomes less responsive making these parameters as
an obstacle in developing a high performance estimator.

In (M’sirdi et al. (2005)), a sliding mode observer (SMO)
has been used to identify the tire/road parameters. It is
one of the popular robust approaches, in fact, the sliding
surface ensures the robustness of the parameter variations.
However, the main disadvantage of the sliding mode tech-
nique is the undesirable chattering phenomenon (Utkin

?

et al. (2009)). Another popular approach is presented
in (Hiraoka et al. (2004)) using adaptive observer. This
method suffers from a significant disadvantage that is the
existence of solution satisfying the sufficient conditions
is not always guaranteed. Furthermore, an accurate es-
timate of the parameters requires that the system inputs
to satisfy the conditions of persistent excitation. In (Ray
(1997)), a extended Kalman-Bucy filtering (EKBF) is used
to estimate lateral forces, which are treated as random
variables. This method allows to achieve precise parameter
estimates, but requires accurate knowledge of the model
and noise statistics.

In the last decades, the development of the interval
observer (Gouzé et al. (2000), Rapaport and Harmand
(2002)) represent an alternative technique for robust es-
timation in the presence of parameter uncertainties, un-
known inputs or measurement disturbances. It becomes, a
popular successful robust approach especially in biotech-
nological domain (Rapaport and Dochain (2005), Meslem
et al. (2008)). Note that, interval observers can be defined
as a pair of estimators based on Luenberger structure
which provide a guaranteed bounds covering all admis-
sible trajectories of system, using a priori known bounds
on uncertain parameters and/or exogenous disturbances.
The synthesis of these observers often uses an additional
assumptions to prove the stability of the estimated bounds,
the monotony and cooperativity (Smith (2008)). These
properties keep the partial order between lower and upper
trajectories.

Several interval observers are proposed in the literature.
For instance, in Rami et al. (2008), Bolajraf et al. (2010)
and Rami et al. (2013), interval observers for linear uncer-
tain systems are presented. The necessary and sufficient
conditions have been formulated in terms of linear pro-
gramming. The case of the LPV and nonlinear systems



are treated in Räıssi et al. (2010), Efimov et al. (2012)
and Efimov et al. (2013) using the Lyapunov theory and
linear matrix inequalities (LMIs). In this paper, an interval
observer for LPV systems which contain unmeasured and
measured uncertain parameters is proposed. The observer
is based on a robust pole assignment depending on the
parameter variation.

The present paper is organized as follows. Some prelimi-
naries are given in section 2. In section 3, we present the
uncertain LPV system of the vehicle lateral dynamics. The
section 4 is devoted to the main result. The Experimental
results are provided in section 5. A conclusion is drawn in
section 6 and end the technical note.

2. PRELIMINARIES

The objective of this section is to provide some notations
and basic definitions that are used throughout the paper.

• A vector with null components is denoted by 0.
• The absolute value of x is denoted by |x|.
• The norm L∞ of x is denoted by ‖x‖.
• The left and right endpoints of an interval [x] (resp.

a matrix M) are denoted respectively by x− and x+

(resp. M− and M+) such as [x] = [x−, x+] (resp.
[M ] = [M−,M+]).

• All the inequalities must be interpreted element wise.
• Let a vector x ∈ Rn or a matrix A ∈ Rn×n, one

denotes x = max{0, x}, x = x− x or A = max{0, A},
A = A−A.
• The eigenvalues of a matrix A are denoted λ.
• A real matrix A is called Hurwitz if all its eigenvalues

have strictly negative real part (Re(λ < 0) ).
• A real matrix A is called Metzler if all its elements

outside the main diagonal are positive (aij ≥ 0, ∀i 6=
j).
• A continuous-time linear system is cooperative if its

state matrix A is a Metzler matrix.

Lemma 1 (Gouzé et al. (2000)) For a Metzler matrix A,
the cooperative system:

ẋ(t) = Ax(t) + d(t)

with x ∈ Rn and d : R → Rn+ is said to be positive if
x(0) ≥ 0 then x(t) ≥ 0, ∀t ≥ 0.
Lemma 2 (Efimov et al. (2012)) Let x ∈ [x−, x+] be a
variable vector, then for a variable matrix ∆A ∈ Rn×n
such as ∆A− ≤ ∆A ≤ ∆A+ for some ∆A−, ∆A+ ∈ Rn×n,
then

∆A+x+ −∆A
+
x− −∆A−x+ + ∆A

−
x− ≤ ∆Ax ≤

∆A
+
x+ −∆A+x− −∆A

−
x+ + ∆A−x−

(1)

3. VEHICLE LATERAL MODEL

Vehicle lateral dynamics could be modeled by a bicycle
model which a two degree of freedom (2-DOF) vehicle
model with sideslip angle and yaw rate as the states.
The dynamics equations can be represented by (Rajamani
(2011)): {

mvx(β̇ + r) = Fyf + Fyr
Iz ṙ = lfFyf − lrFyr

(2)

where m, Iz, lr, lf denote respectively the mass of the
vehicle, the yaw moment and the distances from the rear

Fig. 1. Bicycle Model.

and the front axle to the center of gravity. vx is a time-
varying longitudinal velocity, β is the sideslip angle of the
vehicle and r is the yaw rate. Fyr and Fyf are the lateral
rear and front forces respectively.

The nonlinear forces Fyf and Fyr are usually functions
of the wheel sideslip angle and wheel longitudinal slip
(Dugoff et al. (1970), Pacejka and Bakker (1991), Burck-
hardt (1993), Kiencke and Nielsen (2000)). Using Pacejka’s
magic formula (Pacejka and Bakker (1991)), the lateral
forces are given by:

Fyi = Disin(Citan
−1(Bi(1− Ei)αi + Eitan

−1(Biαi)))
(3)

where i = {r, f} denotes rear and front of the vehicle.
Di, Ci, Bi and Ei are the characteristic constants of the
tires. αf and αr are respectively the front and rear sideslip
angles of the tires expressed by (Cheng et al. (2011)):

αf = δf − β − tan−1(
lf

vx
rcos(β))

αr = −β + tan−1(
lf

vx
rcos(β))

(4)

For small variations of the sideslip angle (≤ 8◦), (4) may
be simplified as follows:

αf = δf − β −
lf
vx
r

αr = −β +
lr
vx
r

(5)

Fyf and Fyr are nonlinear forces but in this work the forces
are considered linear with respect to the sideslip angles of
the tires (linear approximation of (3)):{

Fyf = cfαf
Fyr = crαr

(6)

cf and cr denote respectively the cornering stiffness of
front and rear tires and they correspond to the slope at
the origin (Fig. 2). These parameters are closely related to
road friction. If road friction changes or if the nonlinear tire
region is reached, cornering stiffness varies. Consequently,
we consider in this study that the cornering stiffness in
(6) are expressed as a linear part (denoted ci0) and an
uncertainty term (denoted ∆ci) assumed to be unknown
but bounded with a priori known bounds (Fig. 2):{

Fyf = (cf0 + ∆cf )αf
Fyr = (cr0 + ∆cr)αr

(7)

Gathering equations (2), (5) and (6) leads to the following
model:



Fig. 2. Pacejka lateral force model characteristics.{
ẋ(t) = (A0(ρ(t)) + ∆A(ξ(t)))x(t) +B(ρ(t), ξ(t))u(t)
y(t) = Cx(t) + e(t)

(8)
The state vector x(t) comprises slideslip angle and yaw

rate x(t) = [β r]
T

. y(t) is the measurable output with
an observation matrix C = [0 1] and a measurement
noise e(t). The input of the system is the steering angle
δf . ρ(t) and ξ(t) represent respectively the measurable
and unmeasurable scheduling parameters, where: ρ(t) =[

1

vx

1

v2x

]T
and ξ(t) = [∆cf ∆cr]

T ∈ Ξ is the vector of

uncertain parameters with a known interval Ξ given by:

Ξ =

[
[∆c−f ,∆c

+
f ]

[∆c−r ,∆c
+
r ]

]
(9)

For simplicity of the notations, we adopt Mρ and Mρ,ξ as
a shorthand of M(ρ(t)) and M(ρ(t), ξ(t)) respectively.

The state space matrices A0ρ, ∆Aρ,ξ and B(ξ(t), ρ(t)) are
defined by:

A0ρ =

−cf0 + cr0
m

ρ1(t)
(cr0 lr − cf0 lf )

m
ρ2(t)− 1

(cr0 lr − cf0 lf )

Iz
−cr0 lr

2 + cf0 lf
2

Iz
ρ1(t)

 (10)

∆Aρ,ξ =

−∆cf + ∆cr
m

ρ1(t)
(∆crlr −∆cf lf )

m
ρ2(t)

(∆crlr −∆cf lf )

Iz
−∆crlr

2 + ∆cf lf
2

Iz
ρ1(t)


(11)

B(ξ(t), ρ(t)) =

cf0 + ∆cf
m

ρ1(t)

(cf0 + ∆cf )lf
Iz

 (12)

where ρ1(t) and ρ2(t) are the components of the time-
varying parameter vector ρ(t) (i.e. ρ1(t) = 1

vx
, ρ2(t) = 1

v2x
).

4. INTERVAL OBSERVER DESIGN FOR
LATERAL DYNAMICS ESTIMATION

In this section, an interval observer is presented to estimate
the sideslip angle and lateral tire forces using Pacejka’s

model. A block diagram of the estimation procedure is
illustrated in figure 3. It includes:

(1) An interval observer which uses the measured vari-
ables, longitudinal velocity, yaw rate and steering
angle to obtain the upper and lower bounds of sideslip
angle and yaw rate.

(2) An algebraic estimator based on Pacejka’s equations
to obtain the lateral forces bounds.

Interval LPV
observer

Longitudinal
velocity

Yaw rate

Steering
angle

Pacejka’s
Model

vx

r

δf

Odometer

IMU

Optical Encoder

Lateral dynamics

Sideslip
angle
β+

β−

Yaw rate
r+

r−

Lateral forces

Lateral
front
forces

F+
yf

F−yf

Lateral
rear
forces

F+
yr

F−yr

Fig. 3. Schematic overview of estimation methodology.

The construction of an observer interval for (8) requires
the following assumptions:

Assumption 1. There exist constants X ≥ 0 and U ≥ 0
such that ‖x‖ ≤ X , ‖u‖ ≤ U .
Assumption 2. The pair (A0ρ, C) is detectable ∀ρ(t),
t ≥ 0.
Assumption 3. There exist u−, u+, e−, e+, and matrices
∆A−ρ , ∆A+

ρ , B−ρ , B+
ρ such that:

u− ≤ u(t) ≤ u+ , e− ≤ e(t) ≤ e+ | 0 ∈ [e−, e+] (13)

∆A−ρ ≤ ∆Aρ,ξ ≤ ∆A+
ρ , B−ρ ≤ Bρ,ξ ≤ B+

ρ (14)

The matrices ∆A−ρ , ∆A+
ρ , B−ρ , B+

ρ can be computed
under the assumption that the unmeasured parameter ξ(t)
satisfies (7):

∆A−ρ =


−

∆c+f + ∆c+r

m
ρ1(t)

(
∆c−r lr −∆c+f lf

)
m

ρ2(t)(
∆c−r lr −∆c+f lf

)
Iz

−
∆c+r lr

2 + ∆c+f lf
2

Iz
ρ1(t)


(15)

∆A+
ρ =


−

∆c−f + ∆c−r

m
ρ1(t)

(
∆c+r lr −∆c−f lf

)
m

ρ2(t)(
∆c+r lr −∆c−f lf

)
Iz

−
∆c−r lr

2 + ∆c−f lf
2

Iz
ρ1(t)


(16)

B−ρ =


cf0 + ∆c−f

m
ρ1(t)

(cf0 + ∆c−f )lf

Iz

 , B+
ρ =


cf0 + ∆c+f

m
ρ1(t)

(cf0 + ∆c+f )lf

Iz


(17)



4.1 Interval observer structure

Under assumptions 1,2, and 3 and according to lemma 1,
the following proposed system:

ẋ+(t) = (A0ρ − LρC)x+ + (∆A
+

ρ x
+ −∆A+

ρ x
− −∆A

−
ρ x

+

+∆A−ρ x
−) +B+

ρ u
+ + Lρy + |Lρ|e+

ẋ−(t) = (A0ρ − LρC)x− + (∆A+
ρ x

+ −∆A
+

ρ x
− −∆A−ρ x

+

+∆A
−
ρ x
−) +B−ρ u

− + Lρy + |Lρ|e−

x−(t0) ≤ x(t0) ≤ x+(t0)
(18)

is a LPV interval observer for the system (8) if:

x−(t) ≤ x(t) ≤ x+(t), ∀t ≥ t0 (19)

The inequality (19) is satisfied if the upper and lower
estimation errors e−(t) = x(t)−x−(t) and e+(t) = x+(t)−
x(t) are defined positive for all initial conditions e−(t0) =
x(t0)− x−(t0) ≥ 0 and e+(t0) = x+(t0)− x(t0) ≥ 0.

Dynamics of interval estimation errors are given by:{
ė+(t) = (A0ρ − LρC)e+(t) + d+(t)
ė−(t) = (A0ρ − LρC)e−(t) + d−(t)

(20)

with
d+(t) = (∆A

+

ρ x
+ −∆A+

ρ x
− −∆A

−
ρ x

+ + ∆A−ρ x
−)−

∆Aρ,ξ +B+
ρ u

+ −Bρ,ξu+ |Lρ|e+ − Lρe
d−(t) = ∆Aρ,ξ − (∆A+

ρ x
+ −∆A

+

ρ x
− −∆A−ρ x

++

∆A
−
ρ x
−) +Bρ,ξu−B−ρ u− + Lρe− |Lρ|e−

(21)
The input d+(t) and d−(t) are nonnegative for all t ≥ t0
due to lemma 2 and assumption 3. Using this result and
the fact that A0ρ − LρC is Metzler by construction, then
according to lemma 1, the estimation errors are positive
for all e−(t0) ≥ 0 and e+(t0) ≥ 0.

4.2 Eigenvalue Assignment Problem

The objective of this section is to calculate the gain

Lρ = [l1ρ, l2ρ]
T

such that the matrix (A0ρ − LρC) is
Metzler and Hurwitz ∀ρ(t). If the gain Lρ is chosen such
that (A0ρ−LρC) is Metzler then the proposed observer is
covering all possible state trajectories of (8). Furthermore,
the gain Lρ must ensure the stability and convergence
of the interval observer. These two constraints are hard
constraints, meaning that in some cases they can not
be satisfied simultaneously (See discussion in remark 2).
However, the vehicle model presented in section 3 satisfies
the above constraints and a gain Lρ can be calculated to
ensure stability and cooperativity of the matrix (A0ρ −
LρC).

To study the convergence of the observer, we consider the
total error given by:

e(t) = e+(t)− e−(t)
= x+(t)− x−(t)

(22)

The dynamic of the total observation error e(t) can be
expressed as follows:

ė(t) = ė+(t)− ė−(t)
= (A0ρ − LρC)e(t) + δd(t)

(23)

where

A0ρ − LρC =−
cf0 + cr0

m
ρ1(t) −l1ρ +

cr0 lr − cf0 lf
m

ρ2(t)− 1

cr0 lr − cf0 lf
Iz

−l2ρ −
cf0 l

2
f + cr0 l

2
r

Iz
ρ1(t)

 (24)

and

δd(t) = d+(t)− d−(t)

Stability of total error is ensured when the eigenvalues
of A0ρ − LρC have a strictly negative real parts ∀ρ(t).
Moreover, to ensure positivity, all the A0ρ−LρC elements
outside the main diagonal must be nonnegative.

Remark 1. One can notice that the given vehicle is
understeering, thus cr0 lr − cf0 lf > 0.

Due to remark 1 and the fact that ρ(t) > 0, ∀t ≥ 0 (By
definition), an appropriate choice of the gain l1ρ to ensure
the Metzler condition is:

l1ρ =
cr0 lr−cf0 lf

m ρ2(t)− 1

Then, the eigenvalues of (23) becomes:
λ1ρ = −cf0 + cr0

m
ρ1(t)

λ2ρ = −l2ρ −
cf0 l

2
f + cr0 l

2
r

Iz
ρ1(t)

(25)

Knowing that all parameters cf0 , cr0 , lf , lr, Iz and m are
positive, it is clear that the eigenvalues of A0ρ − LρC for
all ρ(t) > 0, t ≥ 0 are negative if the second component of
the gain vector is defined positive ∀t ≥ 0.

As a conclusion, the observer gain Lρ which ensures
the stability by placing the poles at (25) and ensures
cooperativity of interval observer are given by:(

l1ρ
l2ρ

)
∈

{(
cr0 lr − cf0 lf

m
ρ2(t)− 1

ã

)∣∣∣∣∣ , ã ∈ [0,∞)

}
(26)

Remark 2. In the present work, the synthesis of the pro-
posed observer requires that the gain Lρ ensures simulta-
neously the stability and cooperativity of the observation
error. Note that this assumption is very conservative and
generally difficult to satisfy. Therefore, in the case where
we are not able to compute a gain L(ρ(t)) such that A0ρ−
LρC is Hurwitz and Metzler, we can find a time-varying
non-singular matrix Pρ such that the state matrix in the
new base z = Pρx is Hurwitz and Metzler matrix ∀ρ(t)
(Efimov et al. (2013)). The gain Lρ can be computed for
ensuring for example the asymptotic stability using a pole
placement depending on the time-varying parameter ρ(t)
or using the LMI conditions. Thereafter, the time-varying
change of coordinates is used to ensures the cooperativity
(Metzler condition) of the observation error. However,
there are still some problems to be overcome, essentially,
the problem of practical implementation because the so-
lution based on the time varying change of coordinates
requires online resolution of a differential matrix equation.



4.3 Algebraic estimation of tire forces bounds

The idea now is to estimate the lateral forces using the
algebraic formula of the linearized Pacejka’s model and
the bounds previously estimated, we can express the upper
and lower bounds of lateral forces by:

F+
yf = c+f α

+
f

F−yf = c−f α
−
f

F+
yr = c+r α

+
r

F−yr = c−r α
−
r

(27)

The measured parameter ρ(t), the steering angle δf , the
upper and lower bounds ψ+, ψ−, β+ and β− of yaw rate
and sideslip angle are then used for compute the bounds
of tire slip angles αf and αr, where:

α−f = δf − β+ − lfρ1(t)r+

α+
f = δf − β− − lfρ1(t)r−

α−r = −β+ + lrρ1(t)r−

α+
r = −β− + lrρ1(t)r+

(28)

5. EXPERIMENTAL RESULTS

The interval observers are now tested on a data set
acquired using a prototype vehicle. The run was performed
on at test track located in the city of Versailles-Satory
(France). The track is 3.5Km length with various curve
profiles allowing vehicle dynamics excitation.

Several sensors are implemented on the vehicle: The yaw
rate r is measured using an inertial unit, the steering angle
δf is measured by an absolute optical encoder while an
odometer provides the vehicle longitudinal speed. Finally,
a high precision Correvit sensor provide a measure of the
sideslip angle. This measure is not used for observer design.
It serves only for observer estimation evaluation. The
steering angle and the vehicle longitudinal speed profiles
are shown in figures 3 and 4. One can see that the speed
should be treated as a time-varying parameter.

In addition, on can see from these figures that the steering
angle at the tire level reaches 0.1 rad while the speed
is about 14 m/s. The corresponding lateral acceleration
is about 4.2 m/s2. The lateral forces reach thus the
nonlinear zone. Finally, for our purpose, we assume that
the cornering stiffness parameters are affected of 10%
uncertainty in their value.

The results for the LPV interval observer (18) are shown
in Fig. 6, 7, 8 and 9, the interval observer provides
the guaranteed bounds covering the trajectory of state
variables. The algebraically reconstructed lateral forces
fulfill the interval requirements. During the maneuver,
both the front and the rear tire forces saturate. One can
see on figure 10 that the real front tire force is within the
envelope defined by the interval observer both in the linear
and the nonlinear region.

The initial conditions are chosen different from that of
the measurements. The convergence time is short and the
intervals width are tight. In figure 11, the interval errors
eβ = β+ − β− and er = r+ − r− are shown. We note that
the interval width is related to the model (8) uncertainty.
If the corning stiffness parameters are perfectly known
and the model does not contain uncertainties therefore

estimated bounds will converge asymptotically to the real
state.

Fig. 4. Steering angle.

Fig. 5. Longitudinal velocity.

Fig. 6. Interval estimation for sideslip angle.

Fig. 7. Interval estimation for yaw rate.

Fig. 8. Interval estimation for the front lateral tire force.

6. CONCLUSION

In this work, it has been shown how one can use in-
terval observers for a robust estimation of sideslip angle



Fig. 9. Interval estimation for the rear lateral tire force.

Fig. 10. Interval observer of the real front tire force.

Fig. 11. Interval errors eβ and er.

and lateral tire forces form a two-wheeled vehicle model
subject to interval uncertainties (cornering stiffness). The
longitudinal velocity is treated as the online measurable
time-varying parameter, the proposed interval observer
is time-varying in respect to ρ(t). The simulation results
demonstrate the validity of proposed approach.
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