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Abstract: This paper is dedicated to the design of a state estimator for discrete-time Linear
Parameter Varying (LPV) systems affected by unknown inputs and random Gaussian noises.
Contrary to the existing work, the observer designed in this paper takes measures at several time
steps into account in order to improve the performance (in terms of minimizing the variance
estimation error). This approach is based on combining the classical Kalman Filter with the
design strategies of deterministic observer for LPV systems in deterministic framework. Then, as
an extension of this result, the observer is used for estimation of LPV systems without unknown
inputs when state noises have a very high variance in comparison to the measurement noises.
Simulation results are presented to illustrate the effectiveness of the proposed approach.

Keywords: LPV Systems, Unknown Input Observer, Kalman Filter, Dynamical Systems,
Discrete-time Systems

1. INTRODUCTION

State estimation and filtering have attracted great atten-
tion from researchers and engineers due to their impor-
tance in automatic control, fault diagnosis, monitoring
and supervision of industrial processes. In the context
of deterministic systems, different observers have been
proposed in order to estimate the state of a system from
a set of input-output measurements. See for example the
well-known Luenberger observer presented in Luenberger
(1971) which is considered among the first techniques
for deterministic state estimation. This result has been
developed for a linear system and extended for various
classes of dynamical systems such as singular systems
Koenig (2005), Lipschitz nonlinear systems Koenig (2006),
Pertew et al. (2005), Boulkroune et al. (2013), Takagi-
Sugeno systems Lendek et al. (2010), Ichalal et al. (2009),
Linear Parameter Varying (LPV) systems, etc.

In stochastic framework, dynamical systems are affected
by stochastic noises and perturbations having some prop-
erties such as white noises. Estimating the state of the
system requires the filtration of the measurement in order
to estimate the state by minimizing the effect of these
stochastic noises. For such systems, the first work deal-
ing with the problem of state estimation is proposed in
Kalman (1960). The Kalman Filter (KF) has been used in
many applications and has proved its efficiency in filtering
and state estimation. For nonlinear systems, the Extended
Kalman Filter (EKF) has been developed in order to

⋆ This work is supported by the CNES (Centre National d’Etudes
spatiales), France.

handle the nonlinearities in a dynamical system affected
by stochastic noises. It consists in linearizing the system
along the trajectory of the state at each sample time. For
linear time-invariant (LTI) and linear time-varying (LTV)
systems affected by noises and unknown inputs, a KF has
been proposed in Darouach et al. (1995) and Su et al.
(2015) in order to estimate optimally the state. A sub-
optimal solution has been also provided in Darouach et al.
(2003).

In the context of Linear Parameter Varying (LPV) systems
affected by unknown inputs, different observers have been
proposed in the deterministic framework, one can cite
Ichalal and Mammar (2015), Briat et al. (2011), Marx
et al. (2007), Fiacchini and Millerioux (2013), etc. LPV
represent a large class of dynamical systems in a simple
form that can exploit the rich tools and theories developed
for linear systems. Notice that LPV systems are, in some
way, different from the well-known LTV systems since the
parameters may depend on internal or external variables
having certain properties (inputs, outputs, external pa-
rameters such as, for example, time varying longitudinal
velocity in vehicle lateral dynamics model). Furthermore,
the varying parameters of an LPV system may have inter-
esting properties such as boundedness, differentiability (or
not),...etc.

In this paper, we explore the design of a Minimum Vari-
ance Observer (MVO) for discrete-time LPV systems af-
fected by unknown inputs and Gaussian white noises. In
that field of research Darouach and Zasadzinski (1997)
have first proposed an observer which is efficient with LTV



systems affected by an unknown input in the state equa-
tion. Darouach et al. (2003) generalized that work by the
development of an observer dealing with the presence of an
unknown input in both state and measurement equations.
Then, Gillijns and Moor (2007a) has proposed an observer
with dual state and unknown input estimation based on a
three steps filter, whereas Gillijns and Moor (2007b) gener-
alized the result in the case of the presence of the unknown
input in the measurement equation. However, in that last
work, it has been assumed that the matrix associated with
the unknown input in the measuement equation was full
column rank. That last condition has finally been relaxed
in Hsieh (2009) and in Yong et al. (2016). In all those
previous papers, the idea was to estimate the state at the
current time step, using the measurement available at that
time step and the estimation at the previous time step.
The originality of our paper is to use both measurement
at previous and current time step. This approach gives
us more information, and also more degree of freedom in
order to build a more powerful observer.

The paper is divided as follow. After introducing the
problem in section 2, section 3 presents the main result
of the work. Section 4 gives an application of the result for
linear stochastic systems with high variance in the state
equation. Examples are given for both results in order to
illustrate the talk.

2. PRELIMINARY, NOTATIONS AND PROBLEM
STATEMENT

Let us consider the Linear Parameter Varying (LPV)
system expressed by

{

xk+1 = Aρk
xk +Dρk

dk + Fρk
wk

yk = Cρk
xk + Eρk

dk + vk

(1)

where xk ∈ R
nx , yk ∈ R

ny , and dk ∈ R
nd are the

state vector, the output, and the unknown input of the
system. Aρk

, Dρk
, Fρk

, Cρk
and Eρk

are parameter-varying
matrices with appropriate dimensions. These matrices
depend on the bounded parameter varying vector ρk ∈
Θ ⊂ R

nρ . vk ∈ R
nv and wk ∈ R

ny are two independent
zero-mean Gaussian white noises with constant covariance
matrices W and V respectively, i.e. W = E[wkw

T
k ] and

V = E[vkv
T
k ] for all k.

Throughout all this paper, it is assumed that ny ≥ nd,
and that V is non singular (det(V ) 6= 0).

In this paper,MT denotes the transpose matrix ofM , M+

its pseudo-inverse, and if M is a square matrix, tr(M)
denotes its trace (sum of the diagonal components). In
denotes the identity matrix of dimension n.

The problem that will be discussed in this paper is the
estimation of the state vector xk of system (1) from a
set of noisy output measurements, independently of the
unknown input dk. The observer that is looking for has to
be unbiased, with minimum variance estimation error.

3. UNBIASED MINIMUM VARIANCE OBSERVER

According to our knowledge observers developped to deal
with state estimation of system such that (1) use either
the measure yk or the measure yk+1 in order to estimate
xk+1 from the estimation of xk, but never both measures.

In this work both measures are used, and thus a degree of
freedom is added for the gain matrices calculation. This
approach leads to better results than those obtained in
previous works. Furthermore the present work takes place
in the context of LPV systems, which is a more general
class of system than the LTV, which was mainly studied
in previous papers.

3.1 Main result

The main result of this paper is developed in the following
theorem.

Theorem 1. Under the following condition:

• rank

([

Eρk
0ny×nd

Cρk+1
Dρk

Eρk+1

])

= rank

([

Dρk

Eρk

])

+

rank
(

Eρk+1

)

, ∀ρk ∈ Θ,

the following equations provide an unbiased state estima-
tor with minimum variance for the state estimation of the
stochastic LPV system of equation (1):






























































































x̂k+1 = Nρk
x̂k +Qρk

yk +Rρk
yk+1

Pk+1 = (Aρk
− Lρk

Cρk
)Pk(Aρk

− Lρk
Cρk

)T

+(Fρk
− Lρk

Sρk
)W (Fρk

− Lρk
Sρk

)T

+Lρk
VLT

ρk

Nρk
= Aρk

−Qρk
Cρk

−Rρk
Cρk+1

Aρk
[

Qρk
Rρk

]

= Lρk

Lρk
= Fρk

+ ZkGρk

Zk = ((Aρk
−Fρk

Cρk
)PkC

T
ρk
GT
ρk

+(Fρk
−Fρk

Sρk
)WST

ρk
GT
ρk

−Fρk
VGT

ρk
)

×(Gρk
Cρk

PkC
T
ρk
GT
ρk

+Gρk
Sρk

V ST
ρk
GT
ρk

+Gρk
VGT

ρk
)−1

,

(2)
where

Fρk
=Dρk

A+
ρk
, Gρk

= Mρk
(I −Aρk

A+
ρk
)

Dρk
= [Dρk

0nx,nd
] , Aρk

=

[

Eρk
0ny,nd

Cρk+1
Dρk

Eρk+1

]

Cρk
=

[

Cρk

Cρk+1
Aρk

]

, Sρk
=

[

0ny,nv

Cρk+1
Fρk

]

, V =

[

V 0
0 V

]

,

and Mρk
=
[

0 I2ny−γk

]

UT
ρk
, where Aρk

= Uρk

[

Γρk
0

0 0

]

T T
ρk

is the Singular Value Decomposition of Aρk
, Γρk

being a
non singular matrix, and γk = rank(Aρk

) = rank(Γρk
).

Proof. An unbiased observer with minimum variance
which uses yk and yk+1 can be written under the form:

x̂k+1 = Nρk
x̂k +Qρk

yk +Rρk
yk+1 (3)

The aim of the following proof is to find Nρk
, Qρk

and Rρk

such that both following conditions are satisfied.

• The observer has to be unbiased:

E[ek] = 0, (4)

where ek = xk − x̂k is the estimation error.
• The observer has to be the minimum variance ob-
server among all unbiased ones, i.e. it has to mini-
mizes tr(Pk), where Pk = E[eke

T
k ] is the error esti-

mation covariance matrix.



Note that the first part of the proof is quite similar to
the one proposed in Darouach et al. (2003). Let start by
establishing the dynamic of the estimation error

ek+1 = xk+1 − x̂k+1

= (Aρk
−Qρk

Cρk
−Rρk

Cρk+1
Aρk

)ek
+(Aρk

−Qρk
Cρk

−Rρk
Cρk+1

Aρk
−Nρk

)x̂k

+(Dρk
−Qρk

Eρk
−Rρk

Cρk+1
Dρk

)dk −Rρk
Eρk+1

dk+1

+(Fρk
−Rρk

Cρk+1
Fρk

)wk −Qρk
vk −Rρk

wk+1.

(5)

Recalling that wk, vk, wk+1 are zero mean noises, the
estimation error expectancy can be calculated as follows

E[ek] = (Aρk
−Qρk

Cρk
−Rρk

Cρk+1
Aρk

)E[ek]
+(Aρk

−Qρk
Cρk

−Rρk
Cρk+1

Aρk
−Nρk

)x̂k

+(Dρk
−Qρk

Eρk
−Rρk

Cρk+1
Dρk

)dk −Rρk
Eρk+1

dk+1.

(6)

Thus, condition (4) is satisfied if and only if all the
following equations are satisfied







0 = Aρk
−Qρk

Cρk
−Rρk

Cρk+1
Aρk

−Nρk

0 = Dρk
−Qρk

Eρk
−Rρk

Cρk+1
Dρk

0 = Rρk
Eρk+1

(7)

and it can be deduced that Nρk
= Aρk

− Qρk
Cρk

−
Rρk

Cρk+1
Aρk

and that Lρk
Aρk

= Dρk
, where Lρk

=

[Qρk
Rρk

], Aρk
=

[

Eρk
0ny×nd

Cρk+1
Dρk

Eρk+1

]

and Dρk
=

[Dρk
0nx×nd

]. The equation Lρk
Aρk

= Dρk
has a solution

for Lρk
if and only if the following rank condition is

satisfied

rank(Aρk
) = rank

([

Dρk

Aρk

])

, ∀ρk ∈ Θ (8)

which is equivalent to

rank(Aρk
) = rank

([

Dρk

Eρk

]

+ rank(Eρk+1

)

, ∀ρk ∈ Θ

(9)
which corresponds to the rank condition expressed in
theorem 1. Indeed:

rank

([

Dρk

Aρk

])

= rank

([

Dρk
0

Eρk
0

Cρk+1
Dρk

Eρk+1

])

×rank

([

I 0 0
0 I 0

Cρk+1
0 I

][

Dρk
0

Eρk
0

0 Eρk+1

])

(10)

(see Darouach et al. (2003) for more details).

The rest of the proof differs from Darouach et al. (2003).
The solution Lρk

can then be written as

Lρk
= Fρk

+ ZkGρk
, (11)

where Zk is a gain matrix that will be calculated later,
Fρk

= Dρk
A+

ρk
, Gρk

= Mρk
(I2ny×2ny

− Aρk
A+

ρk
), and

Mρk
is any coefficient matrix whose choice will be dis-

cussed later. By setting Cρk
=

[

Cρk

Cρk+1
Aρk

]

and Sρk
=

[

0ny,nv

Cρk+1
Fρk

]

, the estimation error dynamic becomes

ek+1 = (Aρk
− Lρk

Cρk
)ek + (Fρk

− Lρk
Sρk

)wk

−Lρk

[

Iny ,ny

0ny,ny

]

vk − Lρk

[

0ny,ny

Iny,ny

]

wk+1,
(12)

with the following expectancy:

E[ek+1] = (Ak − Lρk
Cρk

)E[ek], (13)

which makes the estimator unbiased.
In order to achieve the second condition (the minimum
variance estimation), the next step of the estimator con-
struction consists in establishing the covariance matrix
evolution of the estimation error ek. In order to do that,
let us consider the equation (12). In that equation, wk,
vk and wk+1 are three independent noises, but ek and
wk are not independent (it is obviously seen by rewriting
equation (12) at step time k − 1). However for the proof
this dependency will be neglected. A discussion about this
approximation will be presented later in the paper. Thus,

by setting V =

[

V 0
0 V

]

, the calculation of the dynamic

equation of the error covariance matrix Pk = E[eke
T
k ]

gives:

Pk+1

= (Ak −FρkCρk − ZkGρkCρk )Pk(Ak −FρkCρk − ZkGρkCρk )
T

+(Fρk − FρkSρk − ZkGρkSρk )W (Fρk − FρkSρk − ZkGρkSρk )
T

+(Fρk + ZkGρk )V(Fρk + ZkGρk )
T
.

(14)

Zk is then calculated in order to minimize tr(Pk+1). Both
first and second derivatives of tr(Pk+1) with respect to Zk

are
∂tr(Pk+1)

∂Zk

= 2Zk(Gρk
Cρk

PkC
T
ρk
GT
ρk

+Gρk
Sρk

WST
ρk
GT
ρk

+ Gρk
VGT

ρk
)

−2((Ak −Fρk
Cρk

)PkC
T
ρk
GT
ρk

+(Fρk
−Fρk

Sρk
)WST

ρk
GT
ρk

−Fρk
VGT

ρk
),

(15)

and
∂2tr(Pk+1)

∂Z2
k

= 2(Gρk
Cρk

PkC
T
ρk
GT
ρk

+ Gρk
Sρk

WST
ρk
GT
ρk

+Gρk
VGT

ρk
).

(16)

Thus,
∂2tr(Pk+1)

∂Z2
k

, which is the hessian matrix of the appli-

cation Zk 7→ tr(Pk+1), is clearly a non negative symmetric
matrix. Besides, by assumption of the theorem, W is non
singular, and so is V . Thus, ifMρk

is chosen such that Gρk
is

full row rank, then the hessian matrix would be symmetric
positive definite, and there would exist a unique solution
Zk that minimizes tr(Pk+1). In order to construct such a
matrix Gρk

, we set Mρk
=
[

02ny−γk,γk
I2ny−γk

]

UT
ρk

(where

Aρk
= Uρk

[

Γρk
0

0 0

]

T T
ρk

is the singular value decomposition

of Aρk
, with Γρk

non singular, and γk = rank(Aρk
) =

rank(Γρk
) ≤ 2ny), and then Gρk

= Mρk
is full row rank.

Finally, by equaling
∂tr(Pk+1)

∂Zk
to 0, it comes:

Zk = ((Ak −Fρk
Cρk

)PkC
T
ρk
GT
ρk

+(Fρk
−Fρk

Sρk
)WST

ρk
GT
ρk

−Fρk
VGT

ρk
)

×(Gρk
Cρk

PkC
T
ρk
GT
ρk

+ Gρk
Sρk

WST
ρk
GT
ρk

+Gρk
VGT

ρk
)−1,

(17)

which ends the proof.



An algorithm is presented in table 1 in order to make easier
the use of the observer presented in theorem 1.

Remark 2. If Eρk
= 0, then the system represented by

equation (1) becomes
{

xk+1 = Aρk
xk +Dρk

dk + Fρk
wk

yk = Cρk
xk + vk

. (18)

In this case, the rank condition of theorem 1 is written
rank(Cρk+1

Dρk
) = rank(Dρk

) for all ρk ∈ Θ, and the only
change in the observer is the expression of matrices Aρk

and Dρk
that becomes Aρk

= Cρk+1
Dρk

and Dρk
= Dρk

.

3.2 Numerical comparisons

In this subsection, a comparison between the estimator
developed in Darouach et al. (2003) and the one proposed
in theorem 1 will be done by numerical simulations. We
choose to use the work done in Darouach et al. (2003)
as a reference, the observer developed in theorem 1 is (in
a certain sense) an extension (or upgrade) of it (see the
proof of the theorem). Thus, numerical comparisons will
show the level of this upgrade.

In order to do these simulations, time invariant matrices
will be chosen (instead of varying parameters matrices as
in model (1)). Simulations are made for several values
of nx, ny and nd, and in each case, 100 simulations are
used to compare both observers. In each simulation, the
matrices A, D, F , C, E, W and V are generated randomly,
A satisfying the constraint of being a stable matrix, and
C, D and E satisfying the rank condition needed for both
observers. The unknown input is a constant whose value is
generated randomly for each simulation. The convergence
is checked after each simulation by numerical verification.
In each case, simulations are done until having 100 cases
of common convergence (when both observers converge).
The Root Mean Square Error (RMSE) is used as a criteria
of comparison of the performance.

The results are shown in table 1. It can be seen, that that
the proposed observer achieves better results than the one
presented in Darouach et al. (2003). In particular, it shows
that the approximation made in the proof concerning the
dependency between ek and wk is not absurd. Besides,
the number of convergence cases is better in average for
the observer developed in this theorem 1 than the one of
Darouach et al. (2003).

3.3 Illustrative example

In order to illustrate the presented result in an LPV ex-
emple, the proposed observer is compared to the observers
detailled in Darouach et al. (2003) and Yong et al. (2016)
on the following system:














xk+1 =

[

1 (1 + ρk)dt

−ρkdt 1− 2dt

]

xk +

[

ρkdt

(1 + ρk)dt

]

dk +wk

yk =

[

0.5 0

0.1 0.3

]

xk +

[

ρkdt

−1

]

dk + vk

,

(19)

where xk =

[

x1(k)
x2(k)

]

is the state vector. vk and wk

are one dimension zero-mean Gaussian white noises with
standard deviation σw = [0.8 0.8]

T
and σv = [0.5 0.5]

T

Table 1. Numerical Comparison between the
observer developed in Darouach et al. (2003)
(Observer 1 in the table) and the one estab-
lished in theorem 1 (Observer 2 in the table).
In bracket the number of convergence cases out
of the total number of simulations launched.

RMSE on ... x1 x2 x3

nx = 3, Observer 1 (100/2119) 2.07 1.90 2.24
ny = 3, nd = 3 Observer 2 (2119/2119) 1.30 1.25 1.39

nx = 3, Observer 1 (100/2045) 2.05 1.75 1.79
ny = 3, nd = 2 Observer 2 (2045/2045) 1.28 1.32 1.30

nx = 3, Observer 1 (100/100) 1.49 1.43 1.43
ny = 3, nd = 1 Observer 2 (100/100) 1.05 1.09 1.11

nx = 3, Observer 1 (100/2276) 1.59 1.62 1.54
ny = 2, nd = 2 Observer 2 (2276/2276) 1.21 1.17 1.22

nx = 3, Observer 1 (100/2250) 1.88 1.72 1.77
ny = 2, nd = 1 Observer 2 (2250/2250) 1.20 1.19 1.26

nx = 3, Observer 1 (100/2098) 1.54 1.64 1.45
ny = 1, nd = 1 Observer 2 (1427/2098) 1.48 1.55 1.37

nx = 2, Observer 1 (100/313) 1.81 1.92 −
ny = 2, nd = 2 Observer 2 (313/313) 1.26 1.32 −

nx = 2, Observer 1 (100/384) 1.53 2.00 −
ny = 2, nd = 1 Observer 2 (384/384) 1.22 1.34 −

nx = 2, Observer 1 (100/311) 3.59 2.91 −
ny = 1, nd = 1 Observer 2 (255/311) 3.49 2.79 −

nx = 1, Observer 1 (100/100) 1.75 − −
ny = 1, nd = 1 Observer 2 (100/100) 1.75 − −

respectively (covariance matrices W =

[

0.64 0
0 0.64

]

, and

V =

[

0.25 0
0 0.25

]

respectively), and are independent to

each other. We take ρk = 3cos(k.dt)2 + 1. The simulation
is launched during 10 seconds with a step time dt = 0.1s.
The unknown input shown in figure 1 is applied. The initial

covariance matrix is taken to be equal to P0 =

[

100 0
0 100

]

,

and the initial estimation is taken to x0 = [0 0]
T
.
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Fig. 1. Unknown Input

The estimations made by the observers provided in
Darouach et al. (2003) and in Yong et al. (2016) and by
the observer presented in theorem 1 are shown on figure 2
and the associated errors on figure 3.
Figure 4 shows the evolution of the trace of the covariance
error matrix Pk. For the observer of theorem 1, the trace
is lower to the one obtained by the other observers tested.
The sinusoidal evolution after convergence is due to the
time variant aspect of matrices used in the example.
The new observer clearly overpasses the others on that



Algorithm 1 Observer algorithm (under the conditions of theorem 1)

1: Initialization of x̂0 and P0. Matrices Aρk
, Dρk

, Fρk
, Cρk

and Eρk
for all k, as well as matrices W and V are assumed

to be known.
2: for k = 0..N do

3: Dρk
= [Dρk

0nx,nd
] , Aρk

=

[

Eρk
0ny,nd

Cρk+1
Dρk

Eρk+1

]

4: [Uρk
,Γρk

, Tρk
] = svd(Aρk

) (1) (such that Aρk
= Uρk

[

Γρk
0

0 0

]

T T
ρk
), γk = rank(Γρk

)

5: Mρk
=
[

0 I2ny−γk

]

UT
ρk

6: Fρk
= Dρk

A+
ρk
, Gρk

= Mρk
(I −Aρk

A+
ρk
)

7: Cρk
=

[

Cρk

Cρk+1
Aρk

]

, Sρk
=

[

0ny,nv

Cρk+1
Fρk

]

, V =

[

V 0
0 V

]

8: Zk = ((Aρk
− Fρk

Cρk
)PkC

T
ρk
GT
ρk

+ (Fρk
− Fρk

Sρk
)WST

ρk
GT
ρk

− Fρk
VGT

ρk
)(Gρk

Cρk
PkC

T
ρk
GT
ρk

+ Gρk
Sρk

WST
ρk
GT
ρk

+

Gρk
VGT

ρk
)−1

9: Lρk
= Fρk

+ ZkGρk

10: Qρk
= Lρk

(:, 1 : ny) Rρk
= Lρk

(:, ny + 1 : 2ny

11: Nρk
= Aρk

−Qρk
Cρk

−Rρk
Cρk+1

Aρk

12: x̂k+1 = Nρk
x̂k +Qρk

yk +Rρk
yk+1

13: Pk+1 = (Aρk
− Lρk

Cρk
)Pk(Aρk

− Lρk
Cρk

)T + (Fρk
− Lρk

Sρk
)W (Fρk

− Lρk
Sρk

)T + Lρk
VLT

ρk

14: end for

example.
On the numerical point of view, the RMSE provided in
table 2 confirm that the new observer clearly overpasses
the others.
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Fig. 2. Comparison of the estimations obtained by the
observer of Darouach et al. (2003) and by the one
of theorem 1.

Table 2. Mean Square Errors, in average on 100
simulations

Observer provided in MSE on x1 MSE on x2

Darouach et al. (2003) 1.28 2.36

Yong et al. (2016) 1.32 1.68

Theorem 1 1.19 1.34
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Fig. 3. Comparison of the estimation errors obtained by
the observer of Darouach et al. (2003) and by the one
of theorem 1.

4. EXTENSION

In this section, an important extension of theorem 1 will
be seen. It is another observer that can be used in order to
overpass the classical Linear Kalman Filter, in the case
where the noise in the state equation has a very high
variance. In that section, Eρk

is assumed to be equal to
zero, that is the unknown input does not appear in the
measurement equation (see remark 2).

4.1 Problem statement

In this section, we will deal with the following LPV
structure:
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Fig. 4. Comparison of the trace of the covariance matrices
obtained by the observer of Darouach et al. (2003)
and by the observer of theorem 1 (the figure on the
bottom is a zoom of the complete figure on the top).

{

xk+1 = Aρk
xk + Fρk

vk

yk = Cρk
xk + vk,

(20)

where xk ∈ R
nx and yk ∈ R

ny are the state and the
output vector. and wk ∈ R

nv . , Aρk
, and Fρk

are two
matrices parameter-varying with appropriate dimensions.
C is a constant matrix. vk ∈ R

ny is a zero-mean Gaussian
white noise with covariance matrix V . wk ∈ R

nv is any
noise.

4.2 Main result

The second main result of the paper is presented in the
following theorem.

Theorem 3. Under the following condition:

• rank(CFρk
) = rank(Fρk

), ∀ρk ∈ Θ,

the following equations provide an unbiased state estima-
tor independent of the noise wk and its characteristics, for
the state estimation of the stochastic LPV system 20:


























































x̂k+1 = Nρk
x̂k +Qρk

yk +Rρk
yk+1

Pk+1 = (Ak − Lρk
Cρk

)Pk(Ak − Lρk
Cρk

)T

+Lρk
VLT

ρk

Nρk
= Ak −Qρk

Cρk
−Rρk

Cρk+1
Ak

[

Qρk
Rρk

]

= Lρk

Lρk
= Fρk

+ ZkGρk

Zk = ((Ak −Fρk
Cρk

)PkC
T
ρk
GT
ρk

+(Fρk
−Fρk

VGT
ρk
)

×(Gρk
Cρk

PkC
T
ρk
GT
ρk

+ Gρk
VGT

ρk
)−1

, (21)

where

Fρk
= Fρk

(Cρk+1
Fρk

)+, (22)

Gρk
=Mρk

(I − (Cρk+1
Fρk

)(Cρk+1
Fρk

)+),

Cρk
=

[

Cρk

Cρk+1
Aρk

]

, V =

[

V 0
0 V

]

,

with Mρk
=
[

0 I2ny−γk

]

UT
ρk
, where Cρk+1

Fρk
=

Uρk

[

Γρk
0

0 0

]

T T
ρk

is the Singular Value Decomposition of

Cρk+1
Fρk

(Γρk
being a non singular matrix), and γk =

rank(Cρk+1
Fρk

) = rank(Γρk
).

Proof. In order to prove this result, we only need to
replace in theorem 1 Dρk

(resp. dk, Fρk
, W and wk) by

Fρk
(resp. wk, 0, 0 and 0).

Remark 4. Two other cases can be discussed. The first one
is another way of estimating the state of system (1). The
idea is to write the state equation under the form:

xk+1 = Aρk
xk +Dρk

dk (23)

where Dρk
= [Dρk

Fρk
], and dk =

[

dk

wk

]

. Then we can

apply the observer of theorem 1 if the rank condition
rank(CDρk

) = rank(Dρk
) is satisfied, which can also be

written as:

rank([CDρk
CFρk

]) = rank([Dρk
Fρk

]). (24)

If the previous condition is not satisfied, there is still
a hope of decoupling a part of the noise wk. Indeed,
let assume that wk is a noise with a dimension strictly
superior to 1, then it can be written under the form wk =
[

w1,k

w2,k

]

, and thus Fρk
can be written Fρk

= [F1,k F2,k],

such that Fρk
wk = [F1,k F2,k]

[

w1,k

w2,k

]

. If it exists such a

decomposition of wk that satisfies the following condition:

rank([CDρk
CF1,k]) = rank([Dρk

F1,k]), (25)

then the unknown input, as well as the noise w1,k can
be decoupled. The choice of the decomposition of wk

(if several are possible) may be done by considering the
information available on each part w1,k and w2,k of the
noise, or the importance of them variances.

4.3 Illustrative example

In order to illustrate the presented result, we will compare
the proposed observer to the classical Linear Kalman Filter
(LKF) on the following example.







xk+1 =

[

1 (1 + ρk)dt

−ρkdt 1− 2dt

]

xk +

[

1

3

]

wk

yk =
[

1 0
]

xk + vk

, (26)

where wk and vk are zero-mean Gaussian white noises
with covariance matrices W = 10 (we will also test the
cases whereW = 1,W = 100,W = 1000 andW = 10000),
and V = 1 respectively. We take ρk = 3cos(k.dt)2 +1. We
launch the simulation during 10 seconds with a step time
dt = 0.01s.
It can be noted that the Linear Kalman Filter is totally
designed to deal with that kind of system. Indeed, there
is no unknown input, but only Gaussian white noises.
However, we will see that the observer proposed in that
section overpasses the Kalman Filter.



On the numerical point of view, when we have a look at
the MSE provided in table 2, we can see that, despite of
the increase of W , the MSE obtained with the observer
we developed is stable, whereas the one obtained with the
classical Kalman Filter increases with W , although, again,
we only have Gaussian white noises in that example.

Thus we can conclude that, for state noise with high
variance or with unknown characteristics (distribution, or
expectancy or variance), the observer provided in theorem
3 is a very interesting alternative to the classical Linear
Kalman Filter.

Table 3. Mean Square Errors, in average on
100 simulations (LKF : Linear Kalman Filter,

UIKF: Unknown Input Kalman Filter)

MSE on W = 1 W = 10 W = 102 W = 103 W = 104

LKF (x1) 26.3 44.8 45.3 45.5 45.8

UIKF (x1) 32.5 32.6 32.3 32.7 32.6

LKF (x2) 75.8 237.8 315.9 334.9 363.4

UIKF (x2) 99.5 100.2 98.9 99.2 99.5

5. CONCLUSIONS

In this paper, en observer dealing with unknown input
in an LPV system with additive Gaussian white noise
is proposed. This observer decouples the signal from the
unknown input and is optimal (in a minimum variance
sense). Numerical simulations show that it overpasses the
observer designed in Darouach et al. (2003).

As an extension of this development, another observer is
then constructed for LPV systems, and it is shown that
it can be a good alternative to the Kalman filter in the
cases of a state noise with very high variance, or if the
characteristic of the state noise are not totally known.
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